Cover Image
close this bookIntroduction to Electrical Engineering - Basic vocational knowledge (Institut für Berufliche Entwicklung, 213 p.)
View the document(introduction...)
View the documentPreface
View the document1. Importance of Electrical Engineering
close this folder2. Fundamental Quantities of Electrical Engineering
View the document2.1. Current
View the document2.2. Voltage
View the document2.3. Resistance and Conductance
close this folder3. Electric Circuits
View the document3.1. Basic Circuit
View the document3.2. Ohm’s Law
close this folder3.3. Branched and Unbranched Circuits
View the document3.3.1. Branched Circuits
View the document3.3.2. Unbranched Circuits
View the document3.3.3. Meshed Circuits
close this folder4. Electrical Energy
View the document4.1. Energy and Power
View the document4.2. Efficiency
View the document4.3. Conversion of Electrical Energy into Heat
View the document4.4. Conversion of Electrical Energy into Mechanical Energy
close this folder4.5. Conversion of Electrical Energy into Light
View the document4.5.1. Fundamentals of Illumination Engineering
View the document4.5.2. Light Sources
View the document4.5.3. Illuminating Engineering
View the document4.6. Conversion of Electrical Energy into Chemical Energy and Chemical Energy into Electrical Energy
close this folder5. Magnetic Field
View the document5.1. Magnetic Phenomena
View the document5.2. Force Actions in a Magnetic Field
close this folder5.3. Electromagnetic Induction
View the document5.3.1. The General Law of Induction
View the document5.3.2. Utilisation of the Phenomena of Induction
View the document5.3.3. Inductance
close this folder6. Electrical Field
View the document6.1. Electrical Phenomena in Non-conductors
close this folder6.2. Capacity
View the document6.2.1. Capacity and Capacitor
View the document6.2.2. Behaviour of a Capacitor in a Direct Current Circuit
View the document6.2.3. Types of Capacitors
close this folder7. Alternating Current
View the document7.1. Importance and Advantages of Alternating Current
View the document7.2. Characteristics of Alternating Current
View the document7.3. Resistances in an Alternating Current Circuit
View the document7.4. Power of Alternating Current
close this folder8. Three-phase Current
View the document8.1. Generation of Three-phase Current
View the document8.2. The Rotating Field
View the document8.3. Interlinking of the Three-phase Current
View the document8.4. Power of Three-phase Current
close this folder9. Protective Measures in Electrical Installations
View the document9.1. Danger to Man by Electric Shock
close this folder9.2. Measures for the Protection of Man from Electric Shock
View the document9.2.1. Protective Insulation
View the document9.2.2. Extra-low Protective Voltage
View the document9.2.3. Protective Isolation
View the document9.2.4. Protective Wire System
View the document9.2.5. Protective Earthing
View the document9.2.6. Connection to the Neutral
View the document9.2.7. Fault-current Protection
View the document9.3. Checking the Protective Measures

9.2.5. Protective Earthing

In protective earthing, all of the conductive parts not belonging to the service circuit are connected with the protective earthing device by means of the protective conductor. Since the fault current is conducted through the earthing resistance, no impermissibly high contact voltage must occur in the form of voltage drop in this resistance until the breaking current is reached. Therefore, it is necessary to realise a sufficiently small earthing resistance (see formula 9.1.)


UB perm

maximum permissible contact voltage (e.g. 65 V)


breaking current


earthing resistance

Fig. 9.5. shows an example of a fault-current circuit

Fig. 9.5. Fault circuit involved in the protective measure called protective earthing

IF - fault current
RS - earthing resistance
RB - operational earthing resistance

Depending on the fuse used, the breaking current must be selected in such a way that it is higher by the factor k than the rated current of the fuse (formula 9.2.)

Ia = k In



breaking current


switching off factor


rated current of the fuse

In this way it is to be achieved that, in case of a fault, the circuit is interrupted within a adequately short time. High values of k ensure an increased safety due to a quicker response of the fuse but in many cases they cannot be realised by an economically justifiable expense. The minimum values of k are specified, in special regulations in dependence of the type of fuse connected.

For the return flow of the fault current, the water pipes may be used if permission is given. But this is rarely used today because no-metallic water pipes are increasingly employed.