Cover Image
close this bookThe Global Greenhouse Regime. Who Pays? (UNU, 1993, 382 p.)
close this folderPart IV Conclusion
close this folder14 Constructing a global greenhouse regime
View the document(introduction...)
View the documentConditionality and additionality
View the documentTechnology transfer
View the documentMulti-pronged approach
View the documentImplementation procedures
View the documentRegional building blocks
View the documentNorth-'South' conflicts
View the documentConclusion
View the documentNotes and references

Multi-pronged approach

A judicious and careful blend of technology transfer from abroad combined with policies aimed at stimulating the virtuous circle of local technological development and competitiveness are essential to avoid the vicious circle of technological dependency and stagnation. A multi-faceted greenhouse technology transfer strategy will address at least three priorities, namely, reducing the cost of transferred technology; technical assistance and training; and information dissemination and technological collaboration.

Cost reduction

Two major determinants of the cost of transferred technology to developing countries are the rate of local and foreign innovation on the one hand, and whether the importing state is informed so as to enter bargaining on an equal footing with technology suppliers.

Many of the technological needs of developing countries - especially in the rural and urban-informal sectors - are poorly served by foreign technology suppliers. Indigenous centres of scientific and technological research are critical to expand the supply and reduce the cost of generating new technology and adapting imported technology that fulfils local needs. Demonstration programmes are badly needed that address the technical as well as market and non-market barriers to successful technological development in developing countries. Donor support for indigenous research centres and demonstration programmes should be expanded greatly to redress the imbalance in current research foci on technological needs that emanate from the industrial North rather than the modernizing South.

Transnational corporations are very important agents of technology transfer to developing countries. Aid/technology recipients will need to reexamine their traditional technology import policies to stimulate the corporate conduit of technology flows, including reforms of pricing controls, taxes, income repatriation policies, more liberal licensing arrangements, and less stringent ownership limits in joint ventures. Developing countries badly need to increase their flexibility to deal with transnational corporations if they are to 'stay in the loop' of the international technology alliances. Such strategic corporate alliances to develop new technology will likely predominate in the first wave of the greenhouse-driven technological revolution.

The system of creating and protecting intellectual property rights is closely related to the cost of technology generation and imports in developing countries. It is also a vexed issue in the GATT and UNCTAD fore that is unresolved in relation to possible technology transfer protocols in the Climate Change Convention. The jury is still out as to the net costs and benefits of strengthening intellectual property rights in developing countries. In all probability, there will be big winners (some of the technologically developed and technology exporting developing countries might gain substantially) and big losers (countries with absent or weak domestic scientific and technological infrastructure could pay more for technology imports and reap little in return).

A consensus on this issue may prove to be a precondition for implementing the Climate Change Convention. Developing countries have demanded that environmentally sound technology be transferred to them on a concessional and preferential basis and that patents be transferred on a non-commercial basis. But developing countries need not wait until this global standoff ends before obtaining more technology from transnational corporations involved in greenhouse projects. South Korea, for example, had extensive licensing arrangements at the same time concurrently with a loose intellectual property regime. Its electric utility also used 'turn-key' plant contracts to unpackage skills and to train its own engineers initially in know-how skills and later in know-why skills.

Technical assistance and training

Along the lines of the latter 'trick of the trade', Martin Bell has proposed that donors direct new resources to offset the costs of developing human and organizational capabilities to generate and manage technological change. Transnational companies already participate in such transfers provided they recover their costs. Driven by international competition, there appear to be few proprietary barriers to companies transferring such skills, even in 'state ofthe-art 'technologies. To support this skills transfer, donors would need to accept longer time horizons and invest in long running training programmes rather than with traditional, discrete aid projects.

Information dissemination and transnational collaboration

Donors should also support information dissemination programmes that serve energy efficiency programmes of governments and non-governmental agencies. Relatedly, increased scientific work on climate change monitoring and analysis should be supported in the South. Independent scientific and research communities should be strengthened in developing countries if their leaders are to negotiate in an informed fashion on an equal footing with their counterparts from wealthier societies. Such information can rectify the bargaining deficiencies of importing governments as well as facilitate collaboration between autonomous loci of research and development activity within the South. South-South networks of energy utilities and non-governmental networks of scientists and technologists concerned with energy efficiency should be fostered to hasten the pace of technological development and diffusion.

The transport sector exemplifies the need for an expanded role for government as well as South-South collaboration. Travel, car ownership, and freight are growing faster than income in all developing countries. Greenhouse emissions from transport systems are determined by population growth, travel and freight per person, and greenhouse emissions per passenger- and tonne-kilometre. These latter items are largely determined by economic choices which are constrained in the short run by existing settlement patterns, activities, and transportation infrastructure. The ability to design efficient cities and transport infrastructure plus the youthful vintage of vehicular stocks make it possible to combine big increases in transport services with advanced technologies for greenhouse friendly transport systems.

In poor countries, walking and animal powered carts are the main modes of transport for most people. As incomes rise, bicycles, motorcycles, light three-wheeled and various forms of utility and van-based public transport systems emerge. Due to the small number of privately owned light vehicles in developing countries, the combined total of the carbon emissions from fossil fuel used in transport in South and East Asia (excluding Japan), China, Africa, Latin America and the Middle East amounts to about 18 per cent of the world's transport sector carbon emissions.) By 2025, however, one projection shows that their transport emissions will have increased from their current 0.3 gigatonne per year (about 20 per cent of the world total) to about 0.5-0.8 gigatonne of carbon as CO2, or between 30 and 40 per cent of the world's transport emissions. Reducing this emission by 25 per cent by 2025 would save between 10 and 20 per cent of the South's projected permitted emission in that year in this study (see Figure 14.1).

Even in the wealthy countries, mere improvements in new vehicle efficiency will not by themselves significantly reduce overall carbon dioxide emissions from the transport sector if growth in overall use continues on current trends. Changes in modal balance, urban density, and regulation and market policy instruments will all have to be used to curb the transport sector's greenhouse contribution.

In developing countries, the bulk of the passenger and freight transport is on off-road and rural tracks on traditional transport systems. Policy instruments and technologies transferred from the wealthy to the poorest countries may be of some use in cities (as in Singapore and Hong Kong) but have little bearing on the central transport problems. There is an urgent need for these countries to collaborate in research and development of these traditional transport systems. Wealthy societies have little recent experience and existing technological capability relevant to these issues. A bullock cart, for example, has evolved over thousands of years to operate in rough terrain. Local technicians used immediately available materials to make and maintain the carts. Adding pneumatic tyres or creating hard roads without redesigning the whole cart can greatly reduce its resilience and lifetime. Improving a bullock cart and upgrading rural roads is far more complicated than designing a high technology motor vehicle from advanced materials to run in a predictable highway system.

Three priorities for collaboration and information dissemination in the transport sector are:

1 increased technical and financial assistance for producing intermediate means of transport, especially for human and animal-powered freight;)

2 establishing local organizational capabilities to construct, maintain, and rehabilitate roads;

3 creating low-cost, rural-urban transport links.

So far, I have reviewed the critical issues arising from the Convention that pertain to the realization of mutual reciprocity which is at the heart of the implicit North-South contract in the treaty. In the next section, we move from norms of behaviour to procedures relating to implementation and regulation of behaviour of parties to the Convention.