![]() | Radio and Electronics (DED Philippinen, 66 p.) |
![]() | ![]() | (introduction...) |
![]() | ![]() | 1. INTRODUCTION |
![]() | ![]() | (introduction...) |
![]() | ![]() | 1.1. A TRIAL TO STATE A DEFINITION OF ELECTRONICS |
![]() | ![]() | 1.2. A SHORT HISTORY OF ELECTRONICS |
![]() | ![]() | 1.3. CLASSIFICATION OF ELECTRONIC DEVICES |
![]() | ![]() | 2. PRINCIPLES OF RADIO COMMUNICATION UNICATION |
![]() | ![]() | 2.1. BASICAL IDEAS ABOUT COMMUNICATION |
![]() | ![]() | 2.2. DEVELOPMENT OF LONG DISTANCE COMMUNICATION |
![]() | ![]() | 2.3. FIDELITY AND DISTORTION |
![]() | ![]() | 3. TRANSDUCERS |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.1. MICROPHONES |
![]() | ![]() | 3.2. LOUDSPEAKERS |
![]() | ![]() | 3.3. THE TELEPHON SYSTEM |
![]() | ![]() | 3.4. PROBLEM OF FREQUENCY RANGES |
![]() | ![]() | 3.5. BANDWIDTH |
![]() | ![]() | 4. RADIOWAVES |
![]() | ![]() | (introduction...) |
![]() | ![]() | 4.1. ORIGIN OF RADIOWAVES |
![]() | ![]() | 4.2. PARAMETERS OF ELECTROMAGNETIC WAVES |
![]() | ![]() | 4.3. PROPAGATION OF RADIOWAVES |
![]() | ![]() | 4.4. SPECTRUM OF RADIOWAVES AND BANDS OF RADIOWAVES |
![]() | ![]() | 5. MODULATION OF RADIOWAVES |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.1. THE AMPLITUDE MODULATION (AM) |
![]() | ![]() | 5.2. FREQUENCY MODULATION (FM) |
![]() | ![]() | 5.3. SIDEBANDS |
![]() | ![]() | 5.4. TRANSMISSION OF RADIOSIGNALS |
![]() | ![]() | 6. RECEPTION OF RADIOSIGNALS (AM - TYPE) |
![]() | ![]() | 6.1. AERIAL |
![]() | ![]() | 6.2. THE TUNED CIRCUIT |
![]() | ![]() | 6.3. INCIDENTAL REMARK ON BLOCK DIAGRAMS |
![]() | ![]() | 6.4. DETECTOR OR DEMODULATOR |
![]() | ![]() | 6.5. POWER SUPPLY |
![]() | ![]() | 6.6. AMPLIFIER |
![]() | ![]() | 6.7. SUPERHET RECEIVER (the SUPER) |
![]() | ![]() | 6.8 INCIDENTAL REMARK ON MIXING FREQUENCIES |
![]() | ![]() | 6.9. CONSTRUCTION OF A SUPERHETRADIO |
![]() | ![]() | 7. COMPONENTS OF MODERN RADIO RECEIVERS |
![]() | ![]() | 7.1.1. HANDLING OF ELECTRONIC COMPONENTS |
![]() | ![]() | 7.1.2. HANDLING OF PRINTED CIRCUITS |
![]() | ![]() | 7.1.3. DIFFERENTIATION OF COMPONENTS |
![]() | ![]() | 8. PASSIVE COMPONENTS |
![]() | ![]() | 8.1. RESISTORS ELECTRICAL CHARACTERISTICS |
![]() | ![]() | 8.2. CAPACITORS |
![]() | ![]() | 8.3. INDUCTORS |
![]() | ![]() | 8.4. COMBINATION OF PASSIVE COMPONENTS |
![]() | ![]() | 8.4.1. SERIES CONNECTION OF R AND C, OR R AND L |
![]() | ![]() | 8.4.2. COMBINATION OF L AND C, RESONANT (TUNED) CIRCUITS |
![]() | ![]() | 8.4.3. TUNED CIRCUIT CONNECTED TO AN AC-VOLTAGE |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.4.4.1. QUALITY OF TUNED CIRCUITS |
![]() | ![]() | 8.4.4.2. BANDWIDTH |
![]() | ![]() | 9. ACTIVE COMPONENTS -1- DIODES |
![]() | ![]() | 9.1. CHARACTERISTICS OF SEMICONDUCTORS |
![]() | ![]() | 9.2. THE PN-JUNCTION OR DIODE |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.2.1. PN-JUNCTION CONNECTED TO VOLTAGE |
![]() | ![]() | 9.2.2. CHARACTERISTICS OF A PN-JUNCTION OR DIODE |
![]() | ![]() | 9.2.3. ZENERDIODE |
![]() | ![]() | 10. BLOCKS OF RADIOS / -1- / POWER SUPPLIES |
![]() | ![]() | 10.1. GENERAL CONSIDERATIONS |
![]() | ![]() | 10.2. TRANSFORMER |
![]() | ![]() | 10.3. THE RECTIFIERS. |
![]() | ![]() | 10.4. SMOOTHING AND FILTER CIRCUITS |
![]() | ![]() | 10.4.1. THE RESERVOIR CAPACITOR |
![]() | ![]() | 10.4.2. FILTER CIRCUITS |
![]() | ![]() | 10.5. STABILIZATION |
![]() | ![]() | 10.5.1. GENERAL REMARKS |
![]() | ![]() | 10.5.1.1. LOAD VARIATIONS |
![]() | ![]() | 10.5.1.2. INTERNAL RESISTANCE OF VOLTAGESOURCES |
![]() | ![]() | 10.5.1.3. PROBLEMS CAUSED BY THE SMOOTHING CIRCUIT |
![]() | ![]() | 10.5.5. METHODS OF STABILIZATION |
![]() | ![]() | (introduction...) |
![]() | ![]() | 10.5.5.1. PARALLEL-STABILIZATION |
![]() | ![]() | 10.5.2.2. SERIES STABILIZATION |
![]() | ![]() | 11. ACTIVE COMPONENTS -2- / TRANSISTORS |
![]() | ![]() | 11.1. CONSTRUCTION OF A TRANSISTOR |
![]() | ![]() | 11.2. CHARACTERISTICS OF TRANSISTORS |
![]() | ![]() | (introduction...) |
![]() | ![]() | 11.2.1 HANDLING OF CHARACTERISTICS OF TRANSISTORS |
![]() | ![]() | 11.2.1.1. CONSTRUCTION OF THE STATIC-MUTUAL-CHARACTERISTICS |
![]() | ![]() | 11.2.1.2. CONSTRUCTION OF THE DYNAMIC MUTUAL CHARACTERISTICS |
![]() | ![]() | 11.2.1.3. CONSTRUCTION OF THE MAXIMUM-POWER-LINE |
![]() | ![]() | 12. AMPLIFIERS |
![]() | ![]() | (introduction...) |
![]() | ![]() | 12.1. STRUCTURE OF A CLASS A AMPLIFIER |
![]() | ![]() | 12.2. FUNCTION OF A SIMPLE CLASS A AMPLIFIER |
![]() | ![]() | 12.3. ADVANCED CLASS A AMPLIFIER |
![]() | ![]() | 12.4. STABILIZATION OF THE QUIESCENT VOLTAGE |
![]() | ![]() | 13. CLASS B AMPLIFIERS |
![]() | ![]() | 13.1. LIMITS OF CLASS A AMPLIFIERS |
![]() | ![]() | 13.2. CLASS B AMPLIFIERS WITH TRANSFORMERS |
![]() | ![]() | 13.3. CLASS B AMPLIFIERS WITHOUT TRANSFORMERS |
![]() | ![]() | 13.4. POWER AMPLIFIER WITH COMPLIMENTARY TRANSISTORS. |
![]() | ![]() | 14. DETECTOR OR DEMODULATOR |
![]() | ![]() | 15. AGC-AUTOMATIC GAIN CONTROL |
![]() | ![]() | 16. IF-AMPLIFIERS |
![]() | ![]() | 17. FEEDBACK |
![]() | ![]() | 18. OSCILLATORS |
![]() | ![]() | 19. FREQUENCY CHANGERS MIXERSTAGE |
![]() | ![]() | 20. DECOUPLING CIRCUITS |
![]() | ![]() | 21. MATCHING OF AMPLIFIERSTAGES |
![]() | ![]() | 22. COUPLING OF AMPLIFIERSTAGES |
![]() | ![]() | 23. RADIO SERVICING |
![]() | ![]() | 23.1. IMPORTANCE AND SUBJECT OF FAULT FINDING |
![]() | ![]() | 23.2. FAULTS AND FAULT FINDING |
![]() | ![]() | 23.3. FAULT FINDING METHODS |
![]() | ![]() | 24. THE USE OF THE OSCILLOSCOPE |
Inside the radio you will find too that all the components are soldered to one or more sheets of brown or white plastic material which has on one or both sides copper or tinned conductor paths. These sheets are called PRINTED CIRCUITS. These plates are actually the whole wiring of this radio. To make it possible to have a rather complicated whole wiring on these sheets it is often necessary to print the conductorpaths extremly thin. This fact makes it necessary to keep in mind the following:
- Don't bend the printed circuits - you might break a single conductor and you hardly will be able to find this fault anymore.- heat them up only very carefully - you might destroy the conducting paths and then there is much more to be repaired than before.
- touch the conducting paths only if it is unavoidable-they might oxidate and then give no more good connection.
- if you want to check the circuit, always think about another method before starting to dissolder anything - you might spoil the conducting path.
- if you ever broke a conducting path you can repair it by a piece of wire (insulated or not depends on the case you find) but be careful not do cause a short circuit anywhere by a drop of tin (even a very small drop can cause a lot of trouble). In case of a short circuit you might spoil a few other components.