![]() | Radio and Electronics (DED Philippinen, 66 p.) |
![]() | ![]() | (introduction...) |
![]() | ![]() | 1. INTRODUCTION |
![]() | ![]() | (introduction...) |
![]() | ![]() | 1.1. A TRIAL TO STATE A DEFINITION OF ELECTRONICS |
![]() | ![]() | 1.2. A SHORT HISTORY OF ELECTRONICS |
![]() | ![]() | 1.3. CLASSIFICATION OF ELECTRONIC DEVICES |
![]() | ![]() | 2. PRINCIPLES OF RADIO COMMUNICATION UNICATION |
![]() | ![]() | 2.1. BASICAL IDEAS ABOUT COMMUNICATION |
![]() | ![]() | 2.2. DEVELOPMENT OF LONG DISTANCE COMMUNICATION |
![]() | ![]() | 2.3. FIDELITY AND DISTORTION |
![]() | ![]() | 3. TRANSDUCERS |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.1. MICROPHONES |
![]() | ![]() | 3.2. LOUDSPEAKERS |
![]() | ![]() | 3.3. THE TELEPHON SYSTEM |
![]() | ![]() | 3.4. PROBLEM OF FREQUENCY RANGES |
![]() | ![]() | 3.5. BANDWIDTH |
![]() | ![]() | 4. RADIOWAVES |
![]() | ![]() | (introduction...) |
![]() | ![]() | 4.1. ORIGIN OF RADIOWAVES |
![]() | ![]() | 4.2. PARAMETERS OF ELECTROMAGNETIC WAVES |
![]() | ![]() | 4.3. PROPAGATION OF RADIOWAVES |
![]() | ![]() | 4.4. SPECTRUM OF RADIOWAVES AND BANDS OF RADIOWAVES |
![]() | ![]() | 5. MODULATION OF RADIOWAVES |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.1. THE AMPLITUDE MODULATION (AM) |
![]() | ![]() | 5.2. FREQUENCY MODULATION (FM) |
![]() | ![]() | 5.3. SIDEBANDS |
![]() | ![]() | 5.4. TRANSMISSION OF RADIOSIGNALS |
![]() | ![]() | 6. RECEPTION OF RADIOSIGNALS (AM - TYPE) |
![]() | ![]() | 6.1. AERIAL |
![]() | ![]() | 6.2. THE TUNED CIRCUIT |
![]() | ![]() | 6.3. INCIDENTAL REMARK ON BLOCK DIAGRAMS |
![]() | ![]() | 6.4. DETECTOR OR DEMODULATOR |
![]() | ![]() | 6.5. POWER SUPPLY |
![]() | ![]() | 6.6. AMPLIFIER |
![]() | ![]() | 6.7. SUPERHET RECEIVER (the SUPER) |
![]() | ![]() | 6.8 INCIDENTAL REMARK ON MIXING FREQUENCIES |
![]() | ![]() | 6.9. CONSTRUCTION OF A SUPERHETRADIO |
![]() | ![]() | 7. COMPONENTS OF MODERN RADIO RECEIVERS |
![]() | ![]() | 7.1.1. HANDLING OF ELECTRONIC COMPONENTS |
![]() | ![]() | 7.1.2. HANDLING OF PRINTED CIRCUITS |
![]() | ![]() | 7.1.3. DIFFERENTIATION OF COMPONENTS |
![]() | ![]() | 8. PASSIVE COMPONENTS |
![]() | ![]() | 8.1. RESISTORS ELECTRICAL CHARACTERISTICS |
![]() | ![]() | 8.2. CAPACITORS |
![]() | ![]() | 8.3. INDUCTORS |
![]() | ![]() | 8.4. COMBINATION OF PASSIVE COMPONENTS |
![]() | ![]() | 8.4.1. SERIES CONNECTION OF R AND C, OR R AND L |
![]() | ![]() | 8.4.2. COMBINATION OF L AND C, RESONANT (TUNED) CIRCUITS |
![]() | ![]() | 8.4.3. TUNED CIRCUIT CONNECTED TO AN AC-VOLTAGE |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.4.4.1. QUALITY OF TUNED CIRCUITS |
![]() | ![]() | 8.4.4.2. BANDWIDTH |
![]() | ![]() | 9. ACTIVE COMPONENTS -1- DIODES |
![]() | ![]() | 9.1. CHARACTERISTICS OF SEMICONDUCTORS |
![]() | ![]() | 9.2. THE PN-JUNCTION OR DIODE |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.2.1. PN-JUNCTION CONNECTED TO VOLTAGE |
![]() | ![]() | 9.2.2. CHARACTERISTICS OF A PN-JUNCTION OR DIODE |
![]() | ![]() | 9.2.3. ZENERDIODE |
![]() | ![]() | 10. BLOCKS OF RADIOS / -1- / POWER SUPPLIES |
![]() | ![]() | 10.1. GENERAL CONSIDERATIONS |
![]() | ![]() | 10.2. TRANSFORMER |
![]() | ![]() | 10.3. THE RECTIFIERS. |
![]() | ![]() | 10.4. SMOOTHING AND FILTER CIRCUITS |
![]() | ![]() | 10.4.1. THE RESERVOIR CAPACITOR |
![]() | ![]() | 10.4.2. FILTER CIRCUITS |
![]() | ![]() | 10.5. STABILIZATION |
![]() | ![]() | 10.5.1. GENERAL REMARKS |
![]() | ![]() | 10.5.1.1. LOAD VARIATIONS |
![]() | ![]() | 10.5.1.2. INTERNAL RESISTANCE OF VOLTAGESOURCES |
![]() | ![]() | 10.5.1.3. PROBLEMS CAUSED BY THE SMOOTHING CIRCUIT |
![]() | ![]() | 10.5.5. METHODS OF STABILIZATION |
![]() | ![]() | (introduction...) |
![]() | ![]() | 10.5.5.1. PARALLEL-STABILIZATION |
![]() | ![]() | 10.5.2.2. SERIES STABILIZATION |
![]() | ![]() | 11. ACTIVE COMPONENTS -2- / TRANSISTORS |
![]() | ![]() | 11.1. CONSTRUCTION OF A TRANSISTOR |
![]() | ![]() | 11.2. CHARACTERISTICS OF TRANSISTORS |
![]() | ![]() | (introduction...) |
![]() | ![]() | 11.2.1 HANDLING OF CHARACTERISTICS OF TRANSISTORS |
![]() | ![]() | 11.2.1.1. CONSTRUCTION OF THE STATIC-MUTUAL-CHARACTERISTICS |
![]() | ![]() | 11.2.1.2. CONSTRUCTION OF THE DYNAMIC MUTUAL CHARACTERISTICS |
![]() | ![]() | 11.2.1.3. CONSTRUCTION OF THE MAXIMUM-POWER-LINE |
![]() | ![]() | 12. AMPLIFIERS |
![]() | ![]() | (introduction...) |
![]() | ![]() | 12.1. STRUCTURE OF A CLASS A AMPLIFIER |
![]() | ![]() | 12.2. FUNCTION OF A SIMPLE CLASS A AMPLIFIER |
![]() | ![]() | 12.3. ADVANCED CLASS A AMPLIFIER |
![]() | ![]() | 12.4. STABILIZATION OF THE QUIESCENT VOLTAGE |
![]() | ![]() | 13. CLASS B AMPLIFIERS |
![]() | ![]() | 13.1. LIMITS OF CLASS A AMPLIFIERS |
![]() | ![]() | 13.2. CLASS B AMPLIFIERS WITH TRANSFORMERS |
![]() | ![]() | 13.3. CLASS B AMPLIFIERS WITHOUT TRANSFORMERS |
![]() | ![]() | 13.4. POWER AMPLIFIER WITH COMPLIMENTARY TRANSISTORS. |
![]() | ![]() | 14. DETECTOR OR DEMODULATOR |
![]() | ![]() | 15. AGC-AUTOMATIC GAIN CONTROL |
![]() | ![]() | 16. IF-AMPLIFIERS |
![]() | ![]() | 17. FEEDBACK |
![]() | ![]() | 18. OSCILLATORS |
![]() | ![]() | 19. FREQUENCY CHANGERS MIXERSTAGE |
![]() | ![]() | 20. DECOUPLING CIRCUITS |
![]() | ![]() | 21. MATCHING OF AMPLIFIERSTAGES |
![]() | ![]() | 22. COUPLING OF AMPLIFIERSTAGES |
![]() | ![]() | 23. RADIO SERVICING |
![]() | ![]() | 23.1. IMPORTANCE AND SUBJECT OF FAULT FINDING |
![]() | ![]() | 23.2. FAULTS AND FAULT FINDING |
![]() | ![]() | 23.3. FAULT FINDING METHODS |
![]() | ![]() | 24. THE USE OF THE OSCILLOSCOPE |
fig. 5a
There are two people who want to communicate with each other but the distance is too far... WHAT CAN BE DONE?
fig. 5b
A very old fashioned way to solve this problem was to send a MESSENGER.
fig. 5c
Since about 100 years there is a more convenient method of communication: the TELEPHONE.
fig. 5d
Since about 50 years there is another - even more convenient method of communication the RADIO TECHNOLOGY.
SUMMING UP:
Since the PROPAGATION of SOUND is very limited in distance for communication across longer distances another means of transporting the SIGNAL is necessary.
As we are reminded to by the sketches above, COMMUNICATION SYSTEMS have been developed step by step through the last century.
All those different technologies are working in between the two ends of the original way of communicating.
fig. 6
Even the most modern communicationsystem is working on the same overall system:
FIRST: there has to be a method to translate sound (air vibrations) into an ELECTRIC OSCILLATIONS (current or voltage oscillations).SECOND: there has to be a method to transport this electric signal across huge distances Either by wires or by so called ELECTROMAGNETIC WAVES (also called RADIOWAVES)