Cover Image
close this bookIntroduction to Electrical Engineering - Basic vocational knowledge (Institut für Berufliche Entwicklung, 213 p.)
View the document(introduction...)
View the documentPreface
View the document1. Importance of Electrical Engineering
close this folder2. Fundamental Quantities of Electrical Engineering
View the document2.1. Current
View the document2.2. Voltage
View the document2.3. Resistance and Conductance
close this folder3. Electric Circuits
View the document3.1. Basic Circuit
View the document3.2. Ohm’s Law
close this folder3.3. Branched and Unbranched Circuits
View the document3.3.1. Branched Circuits
View the document3.3.2. Unbranched Circuits
View the document3.3.3. Meshed Circuits
close this folder4. Electrical Energy
View the document4.1. Energy and Power
View the document4.2. Efficiency
View the document4.3. Conversion of Electrical Energy into Heat
View the document4.4. Conversion of Electrical Energy into Mechanical Energy
close this folder4.5. Conversion of Electrical Energy into Light
View the document4.5.1. Fundamentals of Illumination Engineering
View the document4.5.2. Light Sources
View the document4.5.3. Illuminating Engineering
View the document4.6. Conversion of Electrical Energy into Chemical Energy and Chemical Energy into Electrical Energy
close this folder5. Magnetic Field
View the document5.1. Magnetic Phenomena
View the document5.2. Force Actions in a Magnetic Field
close this folder5.3. Electromagnetic Induction
View the document5.3.1. The General Law of Induction
View the document5.3.2. Utilisation of the Phenomena of Induction
View the document5.3.3. Inductance
close this folder6. Electrical Field
View the document6.1. Electrical Phenomena in Non-conductors
close this folder6.2. Capacity
View the document6.2.1. Capacity and Capacitor
View the document6.2.2. Behaviour of a Capacitor in a Direct Current Circuit
View the document6.2.3. Types of Capacitors
close this folder7. Alternating Current
View the document7.1. Importance and Advantages of Alternating Current
View the document7.2. Characteristics of Alternating Current
View the document7.3. Resistances in an Alternating Current Circuit
View the document7.4. Power of Alternating Current
close this folder8. Three-phase Current
View the document8.1. Generation of Three-phase Current
View the document8.2. The Rotating Field
View the document8.3. Interlinking of the Three-phase Current
View the document8.4. Power of Three-phase Current
close this folder9. Protective Measures in Electrical Installations
View the document9.1. Danger to Man by Electric Shock
close this folder9.2. Measures for the Protection of Man from Electric Shock
View the document9.2.1. Protective Insulation
View the document9.2.2. Extra-low Protective Voltage
View the document9.2.3. Protective Isolation
View the document9.2.4. Protective Wire System
View the document9.2.5. Protective Earthing
View the document9.2.6. Connection to the Neutral
View the document9.2.7. Fault-current Protection
View the document9.3. Checking the Protective Measures

4.4. Conversion of Electrical Energy into Mechanical Energy

The conversion of electrical energy into mechanical energy is a frequent utilisation of electrical energy. Thus, electric motors are used for moving air in air-conditioning plants, in water pumps, for the drive of machines and vehicles, and many other electrical equipment. The fact that electrical energy is easily convertible into mechanical energy and the possibility of adapting the motor to be used to the given technical task have led to the preferred use of electric motors in practice. In most cases, electric motors are considerably cheaper and require less maintenance than engines. For the various applications, types of electromotors are available which are optimally adapted to the purpose.

Let us consider at first a few important physical quantities of rotary motion. The shaft of a motor rotates at a certain rotational speed n which is usually measured in revolutions per minute (rpm). Fig. 4.6. shows a belt drive. The smaller belt pulley is mounted on the shaft of the motor and the larger pulley on the machine to be driven. The V-belt transmits the force from the motor to the machine. The force transmitted by the V-belt is an essential quantity for computation. The force multiplied by the radius r is called torque M.


Fig. 4.6. Belt drive

M = F · r
[M] = N · m

(4.7.)

where:

M

torque

F

force

r

radius

The sketch shows that the torque acting at the belt pulley with the radius r1 is smaller than the torque at the belt pulley with the larger radius r2. For the rotational speeds of the belt pulleys the relation

n1: n2 = r2: r1 holds.

(4.8.)

where:

n

speed of rotation

r

radius

The mechanical power delivered by the motor is expressed by the following formula:

P = 2 · p 1) M · n
[P] = Nm/s = W

(4.9)

1) p Greek letter pi

where

P

power

M

torque

n

speed of rotation

Example 4.7.

On the belt pulley of a motor having a radius of 50 mm, a force of 20 N is acting. The rotational speed is 1000 rpm. What is the power delivered by the motor?

Given:

r = 50 mm
F = 20 N
n = 1000 rpm

To be found:

P in W

Solution:

P = 2 · M · n
P = 2 · F · r · n
P = 2 · 3.14 · 20 N · 50 mm · 1000 rpm
P = 2 · 3.14 · 20 N · 0.05 m · 1000/60 · 1/s
P = 105 W

The power delivered by the motor is 105 W.

An important item for judging the performance of a motor is the dependence of the rotational speed on the torque (and thus on the load) and the current path at the instant of switching on. The dependence of the efficiency on the torque should also be taken into consideration for an appropriate use. In Fig. 4.7. these dependences are represented for a three-phase squirrel-cage induction motor. This motor, which is the most widely used type, is shown in Fig. 4.8. The characteristics show that the rotational speed is reduced only slightly under load. This property is desired in many drives. When, however, the stalling torque - also known as pull-out torque - Mk is reached, which is above the rated torque Mn, the motor will stall suddenly.


Fig. 4.7. Characteristics of the three-phase asynchronous motor


Fig. 4.8. Three-phase squirrel cage induction motor

At the instant of switching on, only the starting torque Mq is available which is frequently insufficient for heavy drives to cause the motor to start up. Additional measures are then required in order to allow the motor to start up without load at first. This motor is not suited as a drive motor for vehicles because it cannot produced the required starting moment. The efficiency h increases with increasing load. In order to operate the motor with as high an efficiency as possible, a load with the rated moment should be effected. Therefore, the motor power for drives should be chosen according to the required power. It should be noted that at the instant of switching on the input of current Ian is several times higher than for rated operation In. The fuses in series with the motor must comply with these conditions. Frequently switching on and off is unfavorable except for special motors.

As a drive motor for vehicles, the series-wound motor is particularly suitable. The dependence of the rotational speed on the torque is shown in Fig. 4.9. It is evident that the motor produces a very high torque at a low rotational speed; this is conducive to the starting of electric vehicles.


Fig. 4.9. Characteristic of the series motor

If, for example, a squirrel-cage induction motor is to be used for driving a centrifugal pump which is frequently used as a water pump, a motor having a suitable power must be selected. For this purpose, first we have to know the dependence of the required torque on the rotational speed of a centrifugal pump (Fig. 4.10.). The point of intersection of the pump characteristics and the motor characteristics should coincide with the rated torque of the motor.


Fig. 4.10. Interaction of a centrifugal pump and a three-phase squirrel cage induction motor

For many drives, the electromotor is an ideal solution. Its construction is sturdy and it calls for limited maintenance only. Various designs enable an optimum adaptation to the different drive requirements in the various fields of application. The mechanical power delivered by the motor is determined by the rotational speed and the torque. Every motor has its typical characteristics from which conclusions can be drawn as to the practical use.

Questions and problems:

1. Quote some examples of devices which are operated by means of electric motors!

2. Calculate the power delivered by a motor when its belt pulley having a diameter of 100 mm rotates at a speed of 1350 rpm and a force of 50 N acts on the pulley!

3. Why is a three-phase squirrel-cage induction motor not suitable for driving electric vehicles!

4. Why is a series-wound motor not suitable for driving a drilling machine?