Cover Image
close this bookEnergy as it relates to Poverty Alleviation and Environmental Protection (UNDP, 1998, 36 p.)
close this folderExamples of Sustainable Energy Strategies that Simultaneously Address Poverty and Environment Concerns
View the document(introduction...)
View the documentImproved cookstoves and modern fuels
View the documentRural electrification - decentralised options
View the documentImproved urban transportation
View the documentModernised biomass

Improved urban transportation

Since transport is one of the fastest growing sectors of energy use in the developing world and mobility is linked to the basic need of access to jobs, the planning of efficient land-use patterns and transport corridors in urban areas will have significant long-term implications for both energy and poverty. Furthermore, clean fuels and efficient public transportation systems can reduce pollution in urban areas, improving health dramatically. One major technological option to reduce transport demand in developing countries is to improve telecommunication systems, which has had the proven effect of cutting down on trips meant mainly to seek information (Davidson, 1987).

An innovative approach to improved public transportation has been attempted since the 1970s in Curitiba, in southern Brazil. Based on the notion that urban growth ought to take place along planned transport corridors, the city implemented a system of five exclusive busways along radial axes. These were connected with inter-district and feeder bus routes at closed terminals for high-speed transfers. The system implemented a single (social) fare, including transfers, to cross-subsidise the poor who tend to have relatively long commutes. Additional features were special raised boarding-tube bus stops, speed boarding, and extra-long articulated (bus bodies connected by a pivot) buses to increase capacity. A crucial element of the system was its integration with land-use zoning. The structural axes were zoned for high-density land-use, with lower density zoning away from access to public transport. In addition, the government purchased land for low-income housing early on in areas away from the city knowing that transport corridors would be developed there. Special bicycle paths and pedestrian areas were also developed to reduce automobile use. The whole system has been implemented in partnership with private bus companies that buy buses and operate the system, following guidance established by the city.

Curitiba has over 500,000 private cars (more per capita that any Brazilian city except Brasilia). Remarkably, 75% of all commuters (more than 1.3 million passengers per day) use the bus network. This has resulted in fuel consumption rates on the transportation sector that are 25% lower per capita than comparable Brazilian cities and has contributed to the city having one of the lowest rates of ambient air pollution in the country. Finally, the average Curitiba resident spends only about 10% of his or her income on transport, which is a relatively low percentage in Brazil (Rabinovitch and Leitmann, 1993).