Cover Image
close this bookWells Construction: Hand Dug and Hand Drilled (Peace Corps, 1980, 282 p.)
View the document(introduction...)
View the documentAcknowledgments
View the documentIntroduction
close this folderSection one: Planning
close this folderChapter 1: Introduction to wells planning
View the documentA. Overview
View the documentB. The need for adequate water supply
View the documentC. Involving the local community
View the documentD. Selecting the most appropriate water source
View the documentE. Site choice
View the documentF. Preventing water contamination
View the documentG. Types of wells
View the documentH. Well sections
View the documentI. Materials
View the documentJ. Tools and equipment
View the documentK. Sinking method
View the documentL. Preparation for construction
View the documentM. Planning
close this folderSection two: Hand dug wells
View the documentChapter 2: Introduction to hand-dug wells
View the documentChapter 3: Well design
View the documentChapter 4: Supplies
View the documentChapter 5: Lowering and raising workers and equipment
View the documentChapter 6: Digging
View the documentChapter 7: The middle section: overview of lining techniques
View the documentChapter 8: Construction of the middle section
View the documentChapter 9: Construction of the bottom section
close this folderSection three: Drilled wells
View the documentChapter 10: Introduction to drilled wells
View the documentChapter 11: Drilling and casing techniques
View the documentChapter 12: Construction: hand rotary and hand percussion methods
View the documentChapter 13: Construction: sludger method
View the documentChapter 14: Construction: driven and jetted
View the documentChapter 15: The bottom section
close this folderAppendices
View the documentAppendix I: Conversion factors and tables
View the documentAppendix II: Vegetation as an index of ground water
View the documentAppendix III: Uses of dynamite in hand dug wells
View the documentAppendix IV: Cement
View the documentAppendix V: Leveling and plumbing the mold
View the documentAppendix VI: Pipe
View the documentAppendix VII: Pumps
View the documentAppendix VIII: Water treatment in wells
View the documentAppendix IX: Rope strength
View the documentGlossary
View the documentAnnotated bibliography

Appendix IX: Rope strength

Rope strength

This chart is based on a similar chart found in Engineer Field Data (1969) FM5-34, Headquarters Department of the Army, 554 pp. The original chart was given in English units which have here been converted to metric units.

The safe loads listed are for new rope used under favorable conditions. These have been calculated by dividing the breaking strength of the rope by 4. As rope ages or deteriorates, progressively reduce safe loads to one-half of the values given.

Here is an example of how the chart can be used.

A 1 meter high lining ring 10 cm thick with a 1.2 m interior diameter contains 0.41 m³ of concrete. Since concrete normally weighs about 2300 kg. per m³ the lining ring weighs about 943 kg. or 0.943 tons. A new manila rope with a diameter of at least 2.54 cm and a circumference of 7.98 cm will be needed to safely handle the lining ring.