Cover Image
close this bookThe Global Greenhouse Regime. Who Pays? (UNU, 1993, 382 p.)
View the documentList of contributors
View the documentPreface
View the documentAcknowledgements
close this folderPart I Measuring responsibility
close this folder1 Introduction
View the document(introduction...)
View the documentThe greenhouse effect
View the documentWhat was decided at Rio?
View the documentProtocol negotiating difficulties
View the documentKey issues for climate change negotiations
View the documentReferences
close this folder2 The basics of greenhouse gas indices
View the document(introduction...)
View the documentApples and oranges
View the documentImplications
View the documentConclusion: indices do matter
View the documentReferences
close this folder3 Assessing emissions: five approaches compared
View the document(introduction...)
View the documentIntroduction
View the documentComprehensiveness compared
View the documentAccuracy by category
View the documentRegional and national emissions by source
View the documentConclusions
View the documentReferences
View the documentAppendix A: Estimates of greenhouse gas emissions
View the documentAppendix B: Calculating cumulative and current emissions
close this folder4 Who pays (to solve the problem and how much)?
View the document(introduction...)
View the documentIndices of allocation: a brief review
View the documentAccountability
View the documentEquity and efficiency
View the documentConclusion
View the documentReferences
close this folderPart II Resource transfers
close this folder5 North-South carbon abatement costs
View the document(introduction...)
View the documentClimate change convention
View the documentMethod overview
View the documentImplications for the South
View the documentNotes and references
close this folder6 North-South transfer
View the document(introduction...)
View the documentObligation to pay indices
View the documentRedistribution of incremental cost
View the documentBenchmarks
View the documentUN scale of payments
View the documentFinancing mechanisms
View the documentConclusion
View the documentNotes and references
close this folder7 Insuring against sea level rise
View the document(introduction...)
View the documentInsurability of losses
View the documentOil pollution
View the documentNuclear damage
View the documentImplications
View the documentThe insurance scheme proposed by AOSIS
View the documentThe Climate Change Convention
View the documentNotes and references
View the documentAppendix: Scheme proposed by AOSIS for inclusion in the Climate Change Convention
close this folderPart III National greenhouse gas reduction cost curves
close this folder8 Integrating ecology and economy in India
View the document(introduction...)
View the documentIntroduction
View the documentEmissions inventory
View the documentEnergy efficiency and fuel substitution
View the documentEmissions and sequestration from forest biomass
View the documentConclusions
View the documentReferences
close this folder9 Carbon abatement potential in West Africa
View the document(introduction...)
View the documentIntroduction
View the documentLong-term energy and carbon emissions scenarios
View the documentOptions for rational energy use and carbon conservation
View the documentEconomic opportunities for implementation
View the documentPolicy issues for the region
View the documentConclusions
View the documentReferences
close this folder10 Abatement of carbon dioxide emissions in Brazil
View the document(introduction...)
View the documentBrazil energy economy
View the documentEnergy subsector analyses
View the documentChanging land-use trends
View the documentConclusion
View the documentReferences
close this folder11 Thailand's demand side management initiative: a practical response to global warming
View the document(introduction...)
View the documentIntroduction
View the documentEnd-use energy efficiency policies
View the documentCosts and benefits of the DSM master plan
View the documentCO2 reductions from the DSM Plan
View the documentWhy should other developing countries adopt DSM?
View the documentThe role of the multilateral development banks
View the documentConclusions
View the documentReferences
close this folder12 Carbon abatement in Central and Eastern Europe and the Commonwealth of Independent States
View the document(introduction...)
View the documentEnergy-environment nexus
View the documentScenarios for the future
View the documentCountry results
View the documentPolicy implications
View the documentConclusion
View the documentReferences
close this folder13 Greenhouse gas emission abatement in Australia
View the document(introduction...)
View the documentAbatement of energy sector emissions
View the documentEconomic impact of abatement strategies
View the documentNon-energy emission abatement
View the documentAustralia's international role
View the documentCarbon taxes, externalities and other policy instruments
View the documentReferences
close this folderPart IV Conclusion
close this folder14 Constructing a global greenhouse regime
View the document(introduction...)
View the documentConditionality and additionality
View the documentTechnology transfer
View the documentMulti-pronged approach
View the documentImplementation procedures
View the documentRegional building blocks
View the documentNorth-'South' conflicts
View the documentConclusion
View the documentNotes and references
close this folderAppendix: The Climate change convention
View the documentIntroduction
View the documentBackground
View the documentClimate change convention
View the documentArticle 1. Definitions
View the documentArticle 2. Objective
View the documentArticle 3. Principles
View the documentArticle 4 Commitments
View the documentArticle 5. Research and systematic observation
View the documentArticle 6. Education, training and public awareness
View the documentArticle 7. Conference of the Parties
View the documentArticle 8. Secretariat
View the documentArticle 9. Subsidiary body for scientific and technological advice
View the documentArticle 10. Subsidiary Body for implementation
View the documentArticle 11. Financial mechanism
View the documentArticle 12. Communication of information related to implementation
View the documentArticle 13. Resolution of questions regarding implementation
View the documentArticle 14. Settlement of disputes
View the documentArticle 15. Amendments to the Convention
View the documentArticle 16. Adoption and amendment of annexes to the Convention
View the documentArticle 17. Protocols
View the documentArticle 18. Right to vote
View the documentArticle 19. Depositary
View the documentArticle 20. Signature
View the documentArticle 21. Interim arrangements
View the documentArticle 22. Ratification, acceptance, approval or accession
View the documentArticle 23. Entry into force
View the documentArticle 24. Reservations
View the documentArticle 25. Withdrawal
View the documentArticle 26. Authentic texts

Introduction

In this chapter, I present a variety of ways to assess responsibility for greenhouse gas (GHG) emissions. The parameters that could define responsibility from a polluter pays perspective include: which greenhouse gases are counted; which sources are included; and what time frame is used for estimating them. A New Zealander who lives in a country with twenty methane emitting sheep for every person may prefer to keep the gases limited to carbon dioxide only. A Swiss citizen mostly emits carbon dioxide by burning fossil fuels, and may be unhappy if only this gas is controlled. And someone from a recently industrialized country such as Singapore might feel justified in pushing for the inclusion of historic emissions in global greenhouse negotiations. The definition of GHG emissions, therefore, has great practical impact on each country's relative responsibility for emissions. The feasibility of controlling emissions sources, linking national abatement actions efficiently with global targets, and verifying emissions after targets have been set are other important considerations that policy makers must take into account when assessing responsibility for emissions.

In the following analysis, five approaches for assigning responsibility among countries for greenhouse gas emissions are examined. They comprise two historical and three current emissions assessments which vary by level of coverage of sources (Table 3.1):

1 cumulative CO2, energy only;
2 cumulative CO2, energy and biota (including CO2 from both fuels and land clearance);
3 CO2, energy only (current);
4 partial CH4 and CO2 (including current emissions of CO2 from energy consumption and deforestation, and methane from energy production and landfills);
5 comprehensive (current emissions of CO2, CO, CH4 and N2O from energy, industrial, biotic and agricultural sources).

Table 3.1 Sources included in selected cumulative (1860-1986) and current (1988) emissions

  Energy
(CO
2)
Biota
(CO
2)
Landfills
(CH
4)
Othera
1 Cumulative CO2, energy only X      
2 Cumulative CO2, energy & biotab X X    
3 COT, energy (current) X      
4 Partial CH4 and CO2 (current) X' X X  
5 Comprehensive (current) X X X X

a 'Other' includes cement production, and agricultural sources, including livestock, rice cultivation, fertilizer consumption, and biomass burning apart from deforestation. The gases include CO2, CH4, CO, and N2O.
b Includes estimated net CO2 release from soil carbon and from above-ground biomass in areas converted from forests to agricultural uses only.
c CO2 and CH4 emissions.

All of the approaches have already entered discussions, either in a political or an academic context. Most of the approximately two dozen countries that have pledged thus far to meet specific national targets to stabilize or control greenhouse gas emissions have focussed on the control of CO2 emissions from energy consumption. Setting targets for CH4 (methane) from energy and industrial sources and CO2 from biotic sources, in addition to CO2 from fossil fuel combustion is being seriously explored by several industrialized countries. The Framework Convention on Climate Change signed at Rio de Janeiro in June 1992, which requires developed country Parties to submit plans for stabilizing emissions, can be interpreted to apply to all greenhouse gas sources with the exception of halocarbons controlled by the Montreal Protocol. Allocating future emissions based on historical release of greenhouse gases has been proposed by a number of researchers (Krause et al. 1989; Smith 1991; Gruebler and Fuji 1991).

Any of these source categories could form a broad basis for resource transfers from North to South to fund technology transfers or greenhouse gas abatement projects. But as the baseline against which national targets or the allocation of traceable emissions permits are set, the national inventories must be accurate and verifiable. A consensus is more likely to be reached over setting targets for sources and gases that can be measured with confidence. Although in the past, regional environmental agreements have been signed before baseline national emissions estimates were completed, in the case of greenhouse gas emissions where the differences in countries' emissions rates are so great, nations are unlikely to favour setting specific targets for controlling sources for which accurate baseline inventories at the country level are not yet available and cannot yet be monitored.

In the following analysis, the relative comprehensiveness of the different source categories is briefly summarized, followed by a discussion of the problems in estimating emissions from these different sources and time frames. In addition, the implications of the five emission categories is illustrated for a selection of the major emitting countries. A brief description of the emissions totals used, and the method for calculating national inventories appear in Appendix A and Appendix B.