Cover Image
close this bookEl pescado fresco: su calidad y cambios de su calidad (1999)
close this folder4. COMPOSICION QUIMICA
View the document4.1 Principales constituyentes
View the document4.2 Lípidos
View the document4.3 Proteínas
View the document4.4 Compuestos extractables que contienen nitrógeno
View the document4.5 Vitaminas y minerales

4.3 Proteínas

Las proteínas del músculo del pez se pueden dividir en tres grupos:

1 Proteínas estructurales (actina, miosina, tropomiosina y actomiosina), que constituyen el 70-80 por ciento del contenido total de proteínas (comparado con el 40 por ciento en mamíferos). Estas proteínas son solubles en soluciones salinas neutras de alta fuerza iónica (³ 0,5 M).

2. Proteínas sarcoplasmáticas (mioalbúmina, globulina y enzimas), que son solubles en soluciones salinas neutras de baja fuerza iónica (0,15 M). Esta fracción constituye el 25-30 por ciento del total de proteínas.

3. Proteínas del tejido conectivo (colágeno), que constituyen aproximadamente el 3 por ciento del total de las proteínas en teleósteos y cerca del 10 por ciento en elasmobranquios (comparado con el 17 por ciento en mamíferos).

Las proteínas estructurales conforman el aparato contráctil responsable de los movimientos musculares según lo explicado en la Sección 3.2. La composición de aminoácidos es aproximadamente la misma que en las correspondientes proteínas del músculo de mamíferos, a pesar de que las propiedades físicas pueden ser ligeramente diferentes. El punto isoeléctrico (pI) está alrededor del pH 4.5-5.5. A estos valores de pH las proteínas presentan su menor solubilidad, según se ilustra en la Figura 4.4.

La estructura conformacional de las proteínas de los peces es fácilmente modificada mediante cambios en el ambiente físico. La Figura 4.4 muestra como cambian las características de solubilidad de las proteínas miofibrilares después de una congelación/deshidratación. Tratamientos con altas concentraciones salinas o calor pueden ocasionar la desnaturalización, causando cambios irreversibles en la estructura nativa de la proteína.

Cuando las proteínas son desnaturalizadas bajo condiciones controladas, sus propiedades pueden ser utilizadas con propósitos tecnológicos. Un buen ejemplo es la producción de productos a partir de surimi, en los cuales se emplea la capacidad de las proteínas miofibrilares para formar geles. Las proteínas forman un gel muy resistente cuando se añade sal y estabilizadores a una preparación de proteínas musculares (carne finamente picada), que posteriormente se somete a un proceso de calentamiento y enfriamiento controlado (Suzuki, 1981).


Figura 4.4 Solubilidad de las proteínas miofibrilares antes y después del congelado por sublimación a valores de pH en un rango de 2 a 12 (Spinelli et al., 1972)

La mayor parte de las proteínas sarcoplasmáticas son enzimas que participan en el metabolismo celular, como en el caso de la conversión de energía anaeróbica del glucógeno a ATP. Si los organelos dentro de las células musculares se rompen, pueden también estar presentes en la fracción proteica las enzimas metabólicas localizadas dentro del retículo endoplasmático, las mitocondrias y los lisosomas.

Cuando los organelos se rompen, ocurren cambios en la composición de la fracción de proteínas sarcoplasmáticas. Este hecho fue sugerido como método para diferenciar pescado fresco de pescado congelado, asumiendo que los organelos estaban intactos hasta la congelación (Rehbein et al., 1978; Rehbein, 1979; Salfi et al., 1985). Sin embargo, posteriormente se estableció que estos métodos deben ser empleados con gran precaución, dado que algunas enzimas son liberadas de los organelos incluso durante el almacenamiento del pescado en hielo (Rehbein, 1992).

Las proteínas de la fracción sarcoplasmática están muy bien adaptadas y permiten distinguir entre diferentes especies de peces, dado que las diferentes especies tienen su patrón de banda característico cuando son separadas mediante el método de enfoque isoeléctrico. El método fue introducido satisfactoriamente por Lundstrom (1980) y ha sido usado por muchos laboratorios y en muchas especies de pescados. La literatura relacionada ha sido revisada por Rehbein (1990).

Las propiedades químicas y físicas de las proteínas de colágeno difieren según el tipo de tejido como la piel, vejiga natatoria y los miocomatas del músculo (Mohr, 1971). En general, las fibras de colágeno forman una delicada estructura de redes, de complejidad variable, según los diferentes tipos de tejido conectivo, siguiendo un patrón similar al encontrado en mamíferos. Sin embargo, el colágeno en peces es mucho más termolábil y contiene menos pero más lábiles entrecruzamientos que el colágeno presente en los vertebrados de sangre caliente. El contenido de hidroxiprolina es en general menor en peces que en mamíferos, aunque se ha observado una variación total del colágeno entre 4.7 y 10 por ciento (Sato et al., 1989).

Diferentes especies contienen diversas cantidades de colágeno en sus tejidos corporales. Esto ha llevado a una teoría: la distribución del colágeno puede reflejar el comportamiento natatorio de las especies (Yoshinaka et al., 1988). Más aún, las diversas cantidades y los diferentes tipo de colágeno en diferentes peces pueden de igual forma tener una influencia en las propiedades texturales del músculo del pez (Montero y Borderías, 1989). Borresen (1976) desarrolló un método para el aislamiento de la red de colágeno que rodea cada célula muscular. La estructura y composición de estas estructuras ha sido caracterizada posteriormente en bacalao por Almaas (1982).

El papel del colágeno en peces ha sido revisado por Sikorsky et al., (1984). Una excelente revisión es suministrada por Bremner (1992), en la cual presenta la más reciente literatura sobre los diferentes tipos de colágeno encontrados en pescado.

Las proteínas del pescado contienen todos los aminoácidos esenciales y al igual que las proteínas de la leche, los huevos y la carne de mamíferos, tienen un valor biológico muy alto (Cuadro 4.3).

Cuadro 4.3 Aminoácidos esenciales (porcentaje) de varias proteínas

Aminoácido

Pescado

Leche

Carne vacuna

Huevos

Lisina

8,8

8,1

9,3

6,8

Triptófano

1,0

1,6

1,1

1,9

Histidina

2,0

2,6

3,8

2,2

Fenilalanina

3,9

5,3

4,5

5,4

Leucina

8,4

10,2

8,2

8,4

Isoleucina

6,0

7,2

5,2

7,1

Treonina

4,6

4,4

4,2

5,5

Metionina-cisteína

4,0

4,3

2,9

3,3

Valina

6,0

7,6

5,0

8,1

FUENTES: Braekkan, 1976; Moustard, 1957

Los granos de cereales tienen generalmente bajo contenido de lisina y/o aminoácidos que contienen azufre (metionina y cisteína), mientras que el pescado resulta una excelente fuente de estos aminoácidos. En regímenes alimenticios basados principalmente en cereales, un suplemento de pescado puede aumentar significativamente el valor biológico.

Además de las proteínas del pescado mencionadas anteriormente, existe un renovado interés en fracciones proteicas específicas que pueden ser recuperadas de subproductos, particularmente en las vísceras. Uno de estos ejemplos es la proteína básica o protamina encontrada en la lecha del pez macho. El peso molecular es generalmente inferior a 10.000 kD y el pI es mayor de 10. Este es el resultado de la composición extrema de aminoácidos, que puede presentar hasta un 65 por ciento de arginina.

La presencia de las proteínas básicas se conoce desde hace tiempo, sabiéndose también que no están presentes en todas las especies de peces (Kossel, 1928). La mejor fuente son los salmónidos y los arenques, considerando que las protaminas no han sido detectadas en peces como el bacalao.

El carácter extremadamente básico de las protaminas las hace de interés por diferentes razones. Se adhieren a la mayoría de las proteínas menos básicas. Por lo tanto, tienen el efecto de realzar las propiedades funcionales de otras proteínas en el alimento (Poole et al., 1987; Phillips et al., 1989). Sin embargo, la remoción de todos los lípidos presentes en la lecha resulta un problema en la preparación proteica, dado que, su presencia ocasiona sabores y olores objetables en las concentraciones a ser empleadas en los alimentos.

Otra interesante característica de las proteínas básicas es su habilidad para prevenir el crecimiento de microorganismos (Braekkan y Boge, 1964; Kamal et al., 1986). Este parece ser el uso más promisorio para las proteínas básicas en el futuro.