Cover Image
close this bookEco-restructuring: Implications for sustainable development (UNU, 1998, 417 pages)
close this folderPart I: Restructuring resource use
close this folder5. Global energy futures: The long-term perspective for eco-restructuring
View the document(introductory text...)
View the documentIntroduction
View the documentWhat is the energy system?
View the documentEnergy system inefficiencies
View the documentThe deep future energy system
View the documentTransition and the rate of change of the energy system
View the documentNorth-South disparity and sustainable energy systems
View the documentConcluding remarks
View the documentNotes
View the documentReferences

Introduction

Since the mid-nineteenth century, world energy use has been growing, on average, by 2.1 per cent per year. This growth in energy use has fuelled an annual expansion of the world economy of 3.2 per cent. Most importantly, energy and economic growth have combined to raise world population from 1.2 to 5.3 billion, corresponding to an average growth rate of 1.1 per cent per year.

This account of past rates of growth is incomplete as long as it neglects the environmental degradation associated with industrial development, economic growth, and energy use, ranging from local air and water pollution, soil contamination, and reduced biodiversity, to stratospheric ozone depletion and the damage potentially caused by global climate change. Whereas initially the burdens placed by humans on the environment and their resulting consequences were primarily local, it is now apparent that the adverse impacts of human activity are rapidly approaching global dimensions. Foremost among these impacts is the potential for global climate change caused by a growing concentration of greenhouse gases (GHG) in the atmosphere. Climate change is likely to emerge as one of the greatest threats to the development of mankind during the twenty-first century. Scientific evidence linking unrestricted fossil fuel use to potential climatic change is increasingly gaining credibility (see IPCC 1990, 1992). The Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) states that "the balance of evidence suggests a discernible human influence on global climate" (IPCC 1996a). However, fundamental disagreement in the scientific community exists as to the eventual impacts of global climatic change, especially at the regional level.

In large part the threat of climatic change is the result of greenhouse gas emissions from the energy system. The energy system is not the sole source of greenhouse gases, but it is the most important one, currently accounting for roughly half of all such emissions. More importantly, the global energy system is the fastest-growing emitter.

Stabilization of atmospheric GHG concentrations is a policy objective in several industrialized countries. GHG emission reduction targets are a key issue on the agenda of the United Nations Framework Convention on Climate Change (UNFCCC) where the socalled ANNEX 1 countries (OECD and Reforming Economies) have committed themselves to stabilization. Present energy research and environmental policy aim at the identification of energy technology options and strategies that mitigate greenhouse gas emissions. Technology responses analysed by numerous researchers range from efficiency improvements, fuel and technology switching, to GHG emission abatement or removal, and environmentally benign GHG disposal or sequestration. Presently, the discussion centres around issues such as the costs and benefits of different measures, least-cost and hedging strategies, etc. Yet these all focus on incremental and add-on technology fixes within the current energy sector, rather than on a systematic restructuring of the energy system.

What is missing in the current energy-environment debate is a zero-order understanding of the structure of a fully sustainable energy system. Long-term energy and environmental policy requires a reference or target energy system a target beyond the issues of local air pollution and greenhouse gas emission levels. Once established, the long-term reference energy system then plays the role of a beacon for energy policy, for public investment in infrastructure changes beyond the capability of free market forces, for publicly funded research and development activities, as well as for private sector investments. This paper attempts to present a "reference" structure of a sustainable energy system that could serve not only as a long term target for energy and economic policy but also as a guideline for public and private investment.

In a world of continuous technical change, the "reference" energy system is a moving target. Over a period of 50 years and more, technology forecasting based on current knowledge will certainly fail to anticipate future inventions and rates of innovation. The target energy system, therefore, should incorporate least-regret cost features, i.e. it is structured so that future innovation enhances the system's performance rather than making previous infrastructure investments obsolete. Despite the large uncertainties involved, it can be shown that the overall system architecture and some fundamental technological characteristics are quite robust even in a rapidly changing world of technology (Rogner and Britton 1991).

The environmental gains from restructuring the energy system will be compounded if it takes place as an integral part of a fundamental eco-restructuring of the entire economic production and consumption process. Energy is not an end in itself; the prime purpose of energy is to provide energy services such as heating, cooking, mobility, communication, consumption goods, and numerous industrial processes. Eco-restructuring of the energy system, then, goes hand in hand with changes in settlement patterns and transportation infrastructures, workplace arrangements that include telecommuting, de-materializing of the production process, and recycling.

The fundamental features of a sustainable energy system can be defined in terms of the following four compatibility constraints:

1. environmental compatibility,
2. economic compatibility,
3. social compatibility, and
4. geopolitical compatibility.

Regarding environmental compatibility, the fluxes to and from the target energy system should be coherent with nature's energy and material fluxes and should not perturb nature's equilibria. Only then will it be possible to provide for economic growth without environmental costs undermining the gains. On the other hand, economic reasoning demands that the costs of protecting the environment should not exceed the benefits.

An effective and, in the long run, sustainable target energy system should also consider the implications of the historically observed linkage between per capita energy service requirements and demographics. In a world whose population has doubled in a single generation and which continues to grow at alarming rates, even drastic changes that one might be able to engineer in terms of specific energy efficiency improvements or environmental impacts over the next decades could well be swamped by the underlying demographic explosion.

Future energy systems and associated technologies need to be socio-politically acceptable in terms of convenience, level of risk, and economic affordability. Supply security and other potential geopolitical concerns including proliferation issues need also to be effectively resolved.

Once a target energy system is defined, the question of managing the transition must be addressed in terms of both energy system evolution and policy. Given the inherently long lifetime of existing energy infrastructures and lead-times from blueprint to operation of a dozen and more years for new production capacity, the energy system does not lend itself to quick adaptation or modification. The transition phase towards a sustainable energy system is likely to last well into the twenty-first century.

As regards policy measures, initiating the shift away from the potentially unacceptable burdens that the present system places on the environment will probably require more than the present measures ranging from energy price manipulations (green taxes), standards, regulated emission levels, and tradable permits to prescribed technology fixes. Present policy focuses primarily on short-term reductions in local air pollution, not on providing the market with guidelines and incentives for a transition toward an environmentally sustainable energy system. From the perspective of eco-restructuring, one of the most important policy steps would be to get the prices right by internalizing external costs. Still, the enormous changes in infrastructure associated with the transition towards a sustainable energy system are most likely beyond the domain of market forces. Therefore, effective energy policy must be based on a clear understanding of both the eventual shape and structure of the deep future energy system and the implications for the transition phase (Rogner and Britton 1992). This includes our understanding of the energy sources and principal technologies that will be key during this transition phase.