Cover Image
close this bookSustaining the Future: Economic, Social, and Environmental Change in Sub-Saharan Africa (UNU, 1996, 365 pages)
close this folderPart 3: Environment and resource management
close this folderThe fuelwood/energy crisis in Sub-Saharan Africa
View the document(introductory text...)
View the documentIntroduction
View the documentPopulation and environmental concerns
View the documentThe primary energy sector in Sub-Saharan Africa
View the documentProblems of the energy sector in Sub-Saharan Africa
View the documentThe socio-economic implications of the fuelwood crisis
View the documentStrategies to combat the fuelwood crisis Strategies to combst the fuelwood crisis
View the documentNew and renewable energy development
View the documentConclusion
View the documentReferences

Population and environmental concerns

The population of Sub-Saharan Africa is growing by leaps and bounds (3 per cent per annum), reaching over 459 million in 1990 (World Bank 1992) in spite of family planning measures to bring it under control. With a fast population growth rate, people are unable to feed themselves. Meanwhile energy demand is increasing with the rise in population. With increased urbanization and industrialization the situation is worsening as more energy is needed. At the same time, an increase in the demand for petroleum for food production and modernization is leading to an economic crisis. The cost of imports has risen and the value of exports has fallen. More cash crops have to be produced to provide foreign exchange. Meanwhile, farmers and nation-states in general are impoverished and indebted because they have to produce more for less cash. With the shortening of the follow period marginal lands have to be exploited, leading to environmental crisis with rising economic and environmental costs of production (fig. 13.1). High fertility rates and a high percentage of child-bearing women are contributing to the high population growth rates. The issue at stake here is the distribution of the population and its influence on the existing resources of the region. Urbanization rates are even higher (5.6 per cent), though in many countries economic growth has been slow over the past few decades.

The upsurge of population growth has short- and long-term consequences for the existing forest resource base, land use, and fuelwood production. The economic crisis, with its concomitant high rates of unemployment and very low incomes, has encouraged the use of fuelwood in most African cities (fig. 13.1). These urban centres have become, as it were, a lucrative market for fuelwood because it seems to be relatively available and cheaper than modern fuels, which hitherto have not proved a viable alternative in either rural or urban areas.

With growing population pressure on land use, a fuelwood gap is created, putting more pressure on the producing rural areas. Ultimately it is not only the sustainability of the environment that is at stake but the very survival of the urban poor and rural people, with women being the worst victims.

Though the countries of SSA may have divergent political systems and cultures, in broad terms they seem to have a common feature in so far as energy is concerned. They are literally being squeezed in a common energy problem. On the one hand, there is a heavy reliance on imported petroleum for the commercial sector, making petroleum shortages a chronic problem. On the other hand, there is a growing shortage of fuelwood in the predominant traditional sector and acute scarcity in some subregions.

The fuelwood crisis, as the "other energy crisis" is called, began to emerge during the oil crisis of the 1970s and has been aggravated by agricultural policies that aim at making African countries selfsufficient in food production (Eckholm et al. 1984). This has been achieved at the expense of existing forest lands, which are the main sources for fuelwood. National programmes tend to overlook this relationship between food and forest, so that the focus has been either wood or forest. This implies that wood energy is not being exploited in a manner that is sustainable in African countries. It appears that a more acceptable means for safe and sustainable energy production is yet to be found. Before this can be achieved, a good understanding of the African energy situation needs to be established as a basis for formulating a sustainable energy agenda.

Fig. 13.1 The crises of sustainability in Sub-Saharan Africa

According to Gamser (1980), little is known about the dependence of poor people in Africa on the use of forest resources for meeting their energy and subsistence needs. The measures needed to develop energy resources to ensure that rural interests can be served are also not well known. Gamser claims that there is not sufficient empirical understanding of the ecologically diverse lands involved in the tropical forest energy crisis. Neither have forest surveys provided adequate data on the dynamics of forest energy. He therefore calls for a concerted effort on the part of the international community to react positively to the shortfall in the existing data on forest energy production and consumption. At the moment most wood energy statistics, including those of the Food and Agriculture Organization (FAO), are based on estimates or unofficial sources, and this has been rather a weakness as regards knowledge about traditional energy. However, studies undertaken since the 1970s reveal the vulnerability of African countries so far as energy resources are concerned.

Although Africa accounts for 12 per cent of the global population, it consumes only 4 per cent of global energy. Besides, 40 per cent of its energy consumption is mainly in the form of biomass and it consumes no less than 40 per cent of this resource. On the global scale, the proportion of biomass in its total energy consumption is 6 per cent (see tables 13.1 and 13.2).

The rate of consumption varies within Africa when compared with other continents. In the Republic of South Africa, for example, out of the annual per capita consumption of 95GJ, only 5 per cent is biomass; in North Africa it is 11 per cent out of 34GJ. In Sub-Saharan Africa by contrast, out of the minimal per capita consumption of only 15GJ, 73 per cent is biomass (FAO 1987).

In the subregions of Africa the fuelwood situation may be determined by the political economy, the ecology, the geography, the demography, and the culture. Thus the fuelwood situation varies from the Sahel across humid West Africa, through Sudan, Kenya, and the SADCC countries.2 However, within each of these countries, two energy crises, of petroleum and of fuelwood, are experienced.