| **SAMIA: A Bottom-Up Learning Method Using a Simulated Annealing Algorithm** - *Pierre Brézelle and Henri Soldano* - 1993 |

| **The sample complexity of learning fixed-structure Bayesian networks** - *Sanjoy Dasgupta* - 1997 |

| **Sample Complexity of Model-Based Search** - *Christopher D. Rosin* - 2000 |

| **Sample compression, learnability, and the Vapnik-Chervonenkis dimension** - *Manfred Warmuth* - 1997 |

| **Sample compression, learnability, and the Vapnik-Chervonenkis dimension** - *Sally Floyd and Manfred Warmuth* - 1995 |

| **Sample-efficient strategies for learning in the presence of noise** - *Nicolò Cesa-Bianchi, Eli Dichterman, Paul Fischer, Eli Shamir and Hans Ulrich Simon* - 1999 |

| **Sample sizes for sigmoidal neural networks** - *John Shawe-Taylor* - 1995 |

| **A sane algorithm for the synthesis of LISP functions from example problems** - *Y. Kodratoff and J. Fargues* - 1978 |

| **Saving the Phenomenon: Requirements that Inductive Inference Machines not Contradict Known Data** - *M. A. Fulk* - 1988 |

| **Scalability Issues in Inductive Logic Programming** - *Stefan Wrobel* - 1998 |

| **Scalability, Search, and Sampling: From Smart Algorithms to Active Discovery** - *Stefan Wrobel* - 2001 |

| **Scalable and Comprehensible Visualization for Discovery of Knowledge from the Internet** - *Etsuya Shibayama, Masashi Toyoda, Jun Yabe and Shin Takahashi* - 2001 |

| **Scale-sensitive dimensions, uniform convergence, and learnability** - *Noga Alon, Shai Ben-David, Nicolò Cesa-Bianchi and David Haussler* - 1997 |

| **Scaling Reinforcement Learning toward RoboCup Soccer** - *Peter Stone and Richard S. Sutton* - 2001 |

| **Scaling relationships in back-propagation learning** - *G. Tesauro and B. Janssens* - 1988 |

| **Scaling relationships in back-propagation learning: dependence on training set size** - *G. Tesauro* - 1987 |

| **Scaling to domains with irrelevant features** - *Patrick Langley and Stephanie Sage* - 1997 |

| **Scaling up average reward reinforcement learning by approximating the domain models and the value function** - *Prasad Tadepalli and DoKyeong Ok* - 1996 |

| **Scaling Up Inductive Learning with Massive Parallelism** - *Foster John Provost and John M. Aronis* - 1996 |

| **A schema for using multiple knowledge** - *Matjaž Gams, Marko Bohanec and Bojan Cestnik* - 1994 |

| **The Schema Mechanism: A Conception of Constructivist Intelligence** - *G. L. Drescher* - February 1985 |

| **Scientific discovery based on belief revision** - *Eric Martin and Daniel N. Osherson* - December 1997 |

| **Searching for Mutual Exclusion Algorithms Using BDDs** - *Koichi Takahashi and Masami Hagiya* - 2001 |

| **Searching for Representations to Improve Protein Sequence Fold-Class Prediction** - *Thomas R. Ioerger, Larry A. Rendell and Shankar Subramaniam* - 1995 |

| **Searching for structure in multiple streams of data** - *Tim Oates and Paul R. Cohen* - 1996 |

| **Searching in an Unknown Environment: An Optimal Randomized Algorithm for the Cow-Path Problem** - *M. Kao, J. H. Reif and S. R. Tate* - January 1993 |

| **Searching in the presence of linearly bounded errors** - *J. A. Aslam and A. Dhagat* - 1991 |

| **Second Difference Method Reinforced by Grouping: A New Tool for Assistance in Assignment of Complex Molecular Spectra** - *Takehiko Tanaka* - 2001 |

| **Second Order Features for Maximising Text Classification Performance** - *Bhavani Raskutti, Herman Ferrá and Adam Kowalczyk* - 2001 |

| **A Second-Order Perceptron Algorithm** - *Nicolò Cesa-Bianchi, Alex Conconi and Claudio Gentile* - 2002 |

| **Second tier for decision trees** - *Miroslav Kubat* - 1996 |

| **Selecting a Classification Method by Cross-Validation** - *Cullen Schaffer* - 1993 |

| **Selecting Examples for Partial Memory Learning** - *Marcus A. Maloof and Ryszard S. Michalski* - 2000 |

| **Selection criteria for word trigger pairs in language modelling** - *Christoph Tillmann and Hermann Ney* - 1996 |

| **Selection of Support Vector Kernel Parameters for Improved Generalization** - *Loo-Nin Teow and Kia-Fock Loe* - 2000 |

| **Selective reformulation of examples in concept learning** - *Jean-Daniel Zucker and Jean-Gabriel Ganascia* - 1994 |

| **Selective sampling using the query by committee algorithm** - *Yoav Freund, H. Sebastian Seung, Eli Shamir and Naftali Tishby* - 1997 |

| **Selective Voting for Perceptron-like Online Learning** - *Yi Li* - 2000 |

| **Self bounding learning algorithms** - *Yoav Freund* - 1998 |

| **Self-Directed Learning and Its Relation to the VC-Dimension and to Teacher-Directed Learning** - *Shai Ben-David and Nadav Eiron* - 1998 |

| **Self-Duality of Bounded Monotone Boolean Functions and Related Problems** - *Daya Ram Gaur and Ramesh Krishnamurti* - 2000 |

| **Self-improving factory simulation using continuous-time average-reward reinforcement learning** - *Sridhar Mahadevan, Nicholas Marchalleck, Tapas K. Das and Abhijit Gosavi* - 1997 |

| **Self-Improving Reactive Agents Based On Reinforcement Learning, Planning and Teaching** - *Long-ji Lin* - 1992 |

| **Self-improving reactive agents: case studies of Reinforcement Learning Frameworks** - *L. Lin* - August 1990 |

| **Self-learning reaching motion of a multi-joint arm using a trial-and-error heuristic and a neural network** - *K. Amakawa* - 1991 |

| **Self-Optimizing and Pareto-Optimal Policies in General Environments Based on Bayes-Mixtures** - *Marcus Hutter* - 2002 |

| **Semi-supervised learning** - *L. Pitt and R. Board* - 1987 |

| **Semi-Supervised Learning** - *R. A. Board and L. Pitt* - 1989 |

| **Sensitive discount optimality: unifying discounted and average reward reinforcement learning** - *Sridhar Mahadevan* - 1996 |

| **Sensitivity constraints in learning** - *Scott H. Clearwater and Yongwon Lee* - 1994 |

| **Separating distribution-free and mistake-bound learning models over the Boolean domain** - *A. Blum* - 1990 |

| **Separating PAC and Mistake-Bound Learning Models over the Boolean Domain** - *A. Blum* - 1990 |

| **A Sequential Approximation Bound for Some Sample-Dependent Convex Optimization Problems with Applications in Learning** - *Tong Zhang* - 2001 |

| **Sequential PAC learning** - *Dale Schuurmans and Russell Greiner* - 1995 |

| **Sequential prediction of individual sequences under general loss functions** - *D. Haussler, J. Kivinen and M. K. Warmuth* - 1998 |

| **Sequential Sampling Techniques for Algorithmic Learning Theory** - *Osamu Watanabe* - 2000 |

| **Set-driven and rearrangement-independent learning of recursive languages** - *S. Lange and T. Zeugmann* - 1996 |

| **Shaping in Reinforcement Learning by Changing the Physics of the Problem** - *Jette Randløv* - 2000 |

| **Sharper Bounds for the Hardness of Prototype and Feature Selection** - *Richard Nock and Marc Sebban* - 2000 |

| **Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement** - *Jürgen Schmidhuber, Jieyu Zhao and Marco Wiering* - 1997 |

| **Shifting Vocabulary Bias in Speedup Learning** - *Devika Subramanian* - 1995 |

| **Shift of Bias for Inductive Concept Learning** - *P. Utgoff* - 1987 |

| **Short-Term Profiling for a Case-Based Reasoning** - *Esma A\"ımeur and Mathieu Vézeau* - 2000 |

| **SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attributes based Concepts** - *Gilles Venturini* - 1993 |

| **Similarity-Based Models of Word Cooccurrence Probabilities** - *Ido Dagan, Lillian Lee and Fernando C. N. Pereira* - 1999 |

| **A simple algorithm for learning O(log n)-term DNF** - *Eyal Kushilevitz* - 1996 |

| **A simple algorithm for predicting nearly as well as the best pruning labeled with the best prediction values of a decision tree** - *Eiji Takimoto, Ken'ichi Hirai and Akira Maruoka* - 1997 |

| **A Simple Approach to Ordinal Classification** - *Eibe Frank and Mark Hall* - 2001 |

| **A Simple Decomposition Method for Support Vector Machines** - *Chih-Wei Hsu and Chih-Jen Lin* - 2002 |

| **Simple DFA are polynomially probably exactly learnable from simple examples** - *Rajesh Parekh and Vasant Honavar* - 1999 |

| **Simple Flat Languages: A Learnable Class in the Limit from Positive Data** - *T. Okadome* - 1999 |

| **A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems** - *David J. Hand and Robert J. Till* - 2001 |

| **A Simple Greedy Algorithm for Finding Functional Relations: Efficient Implementation and Average Case Analysis** - *Tatsuya Akutsu, Satoru Miyano and Satoru Kuhara* - 2000 |

| **Simple learning algorithms for decision trees and multivariate polynomials** - *Nader H. Bshouty and Yishay Mansour* - 1995 |

| **Simple learning algorithms using divide and conquer** - *Nader H. Bshouty* - 1995 |

| **A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training** - *L. K. Jones* - 1992 |

| **A Simple Method for Generating Additive Clustering Models with Limited Complexity** - *Michael D. Lee* - 2002 |

| **Simple PAC learning of simple decision lists** - *Jorge Castro and José L. Balcázar* - 1995 |

| **A Simpler Analysis of the Multi-way Branching Decision Tree Boosting Algorithm** - *Kohei Hatano* - 2001 |

| **Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning** - *Ronald J. Williams* - 1992 |

| **Simple Translation-Invariant Concepts Are Hard to Learn** - *M. Jerrum* - 1994 |

| **Simplified support vector decision rules** - *Chris J. C. Burges* - 1996 |

| **Simplifying Decision Trees** - *J. R. Quinlan* - 1987 |

| **A Simulated Annealing-Based Learning Algorithm for Boolean DNF** - *Andreas Alexander Albrecht and Kathleen Steinhöfel* - 1999 |

| **Simulating Access to hidden information while learning** - *P. Auer and P. Long* - 1994 |

| **Simulating Teams with Many Conjectures** - *Bala Kalyanasundaram and Mahendran Velauthapillai* - 1995 |

| **Simulating the Child's Acquisition of the Lexicon and Syntax - Experiences with Babel** - *Rick Kazman* - 1994 |

| **Simulation results for a new two-armed bandit heuristic** - *Ronald L. Rivest and Yiqun Yin* - 1994 |

| **Simultaneous learning of concepts and simultaneous estimation of probabilities** - *K. Buescher and P. R. Kumar* - 1991 |

| **SISP/1, an interactive system able to synthesize functions from examples** - *J. P. Jouannaud and T. P. Treuil* - 1977 |

| **SLUG: A Connectionist Architecture for Inferring the Structure of Finite-State Environments** - *Michael C. Mozer and Jonathan Bachrach* - 1991 |

| **Small sample decision tree pruning** - *Sholom M. Weiss and Nitin Indurkhya* - 1994 |

| **Smooth Boosting and Learning with Malicious Noise** - *Rocco A. Servedio* - 2001 |

| **Smoothed Bootstrap and Statistical Data Cloning for Classifier Evaluation** - *Gregory Shakhnarovich, Ran El-Yaniv and Yoram Baram* - 2001 |

| **Smoothing Probabilistic Automata: An Error-Correcting Approach** - *Pierre Dupont and Juan-Carlos Amengual* - 2000 |

| **SOAR: An architecture for General Intelligence** - *J. E. Laird, A. Newell and P. S. Rosenbloom* - September 1987 |

| **Social Agents Playing a Periodical Policy** - *Ann Nowé, Johan Parent and Katja Verbeeck* - 2001 |

| **Soft classification, a.k.a. risk estimation, via penalized log likelihood and smoothing spline analysis of variance** - *Grace Wahba, Chong Gu, Yuedong Wang and Richard Chappell* - 1995 |

| **Soft Margins for AdaBoost** - *G. Rätsch, T. Onoda and K.-R. Müller* - 2001 |

| **A solution of the syntactical induction-inference problem for regular languages** - *T. W. Pao and J. W. I. Carr* - 1978 |

| **A solution of the syntactical induction-inference problem for regular languages** - *T. W. Pao* - 1978 |

| **Solution to inductive inference problem P3** - *J. Case and M. Fulk* - 1983 |

| **Solving a huge number of similar tasks: a combination of multi-task learning and a hierarchical Bayesian approach** - *Tom Heskes* - 1998 |

| **Solving Multiclass Learning Problems via Error-Correcting Output Codes** - *T. G. Dietterich and G. Bakiri* - 1995 |

| **Solving POMDPs with Levin search and EIRA** - *Marco Wiering and Jürgen Schmidhuber* - 1996 |

| **Solving the Multiple-Instance Problem: A Lazy Learning Approach** - *Jun Wang and Jean-Daniel Zucker* - 2000 |

| **Some classes of prolog programs inferable from positive data** - *M. R. K. Krishna Rao* - 2000 |

| **Some computational lower bounds for the computational complexity of inductive logic programmming** - *Jorg-Uwe Kietz* - 1993 |

| **Some Criterions for Selecting the Best Data Abstractions** - *Makoto Haraguchi and Yoshimitsu Kudoh* - 2001 |

| **Some Decidability results on Grammatical Inference and Complexity** - *J. Feldman* - 1972 |

| **Some elements of machine learning** - *J. R. Quinlan* - 1999 |

| **Some Greed Algorithms for Sparce Nonlinear Regression** - *Prasanth B. Nair, Arindam Choudhury and Andy J. Keane* - 2001 |

| **Some ideas on learning with directional feedback** - *I. Barland* - June 1992 |

| **Some improved sample complexity bounds in the probabilistic PAC learning model** - *Jun-ichi Takeuchi* - 1993 |

| **Some Improvements on Event-Sequence Temporal Region Methods** - *Wei Zhang* - 2000 |

| **Some Independence Results for Control Structures in Complete Numberings** - *Sanjay Jain and Jochen Nessel* - 2001 |

| **Some Label Efficient Learning Results** - *David Helmbold and Sandra Panizza* - 1997 |

| **Some Local Measures of Complexity of Convex Hulls and Generalization Bounds** - *Olivier Bousquet, Vladimir Koltchinskii and Dmitriy Panchenko* - 2002 |

| **Some Lower Bounds for the Computational Complexity of Inductive Logic Programming** - *Jörg-Uwe Kietz* - 1993 |

| **Some natural properties of strong identification in inductive inference** - *E. Minicozzi* - 1976 |

| **Some New Directions in Computational Learning Theory** - *M. Frazier and L. Pitt* - 1994 |

| **Some Notes on Chernoff Bounds** - *R. H. Sloan* - 1987 |

| **Some PAC-Bayesian Theorems** - *David A. McAllester* - 1999 |

| **Some Philosophical Problems with Formal Learning Theory** - *J. Amsterdam* - August 1988 |

| **Some problems of learning with an oracle** - *E. B. Kinber* - 1990 |

| **Some Problems on Inductive Inference from Positive Data** - *T. Shinohara* - 1986 |

| **Some remarks about space-complexity of learning, and circuit complexity of recognizing** - *S. Boucheron and J. Sallantin* - 1988 |

| **Some Results in the Theory of Effective Program Synthesis - Learning by Defective Information** - *G. Schäfer-Richter* - 1986 |

| **Some Results on Learning** - *B. K. Natarajan* - 1989 |

| **Some Sequence Extrapolating Programs: a Study of Representation and Modeling in Inquiring Systems** - *S. Persson* - 1966 |

| **Some Sparse Approximation Bounds for Regression Problems** - *Tong Zhang* - 2001 |

| **Some Special Vapnik-Chervonenkis Classes** - *R. S. Wenocur and R. M. Dudley* - 1981 |

| **Some Statistical-Estimation Methods for Stochastic Finite-State Transducers** - *David Picó and Francisco Casacuberta* - 2001 |

| **Some studies in machine learning using the game of checkers** - *A. L. Samuel* - July 1959 |

| **Some theorems concerning the free energy of (un)constrained stochastic Hopfield neural networks** - *Jan van den Berg and Jan C. Bioch* - 1995 |

| **Some Theoretical Aspects of Boosting in the Presence of Noisy Data** - *Wenxin Jiang* - 2001 |

| **Some weak learning results** - *D. P. Helmbold and M. K. Warmuth* - 1992 |

| **Sonar-based mapping with mobile robots using EM** - *Wolfram Burgard, Dieter Fox, Hauke Jans, Christian Matenar and Sebastian Thrun* - 1999 |

| **A space-bounded learning algorithm for axis-parallel rectangles** - *Foued Ameur* - 1995 |

| **Space-bounded learning and the Vapnik-Chervonenkis dimension** - *S. Floyd* - 1989 |

| **Space-bounded learning and the Vapnik-Chervonenkis Dimension (Ph.D)** - *S. Floyd* - December 1989 |

| **Space Efficient Learning Algorithms** - *D. Haussler* - 1988 |

| **The Space of Jumping Emerging Patterns and Its Incremental Maintenance Algorithms** - *Jinyan Li and Kotagiri Ramamohanarao* - 2000 |

| **SPADE: An Efficient Algorithm for Mining Frequent Sequences** - *Mohammed J. Zaki* - 2001 |

| **Sparse Distributed Memory** - *P. Kanerva* - 1988 |

| **Sparse Greedy Matrix Approximation for Machine Learning** - *Alex J. Smola and Bernhard Schölkopf* - 2000 |

| **Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces** - *Gunnar Rätsch, Ayhan Demiriz and Kristin P. Bennett* - 2002 |

| **A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes** - *Michael Kearns, Yishay Mansour and Andrew Y. Ng* - 2002 |

| **Sparsity vs. Large Margins for Linear Classifiers** - *Ralf Herbrich, Thore Graepel and John Shawe-Taylor* - 2000 |

| **Special Issue of Machine Learning on Information Retrieval Introduction** - *Jaime Carbonell, Yiming Yang and William Cohen* - 2000 |

| **Special Issue on Genetic Algorithms** - *K. D. Jong* - October 1990 |

| **Specification and simulation of statistical query algorithms for efficiency and noise tolerance** - *Javed A. Aslam and Scott E. Decatur* - 1998 |

| **A spectral lower bound technique for the size of decision trees and two level circuits** - *Y. Brandman, J. Hennessy and A. Orlitsky* - 1990 |

| **Speeding inference by acquiring new concepts** - *Henry Kautz and Bart Selman* - July 1992 |

| **Speeding-up nearest neighbour memories: the template tree case memory organisation** - *Stephan Grolimund and Jean-Gabriel Ganascia* - 1996 |

| **Speeding Up Relational Reinforcement Learning through the Use of an Incremental First Order Decision Tree Learner** - *Kurt Driessens, Jan Ramon and Hendrik Blockeel* - 2001 |

| **Speeding up the synthesis of programs from traces** - *A. W. Biermann, R. I. Baum and F. E. Petry* - 1975 |

| **The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions** - *Jürgen Schmidhuber* - 2002 |

| **Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension** - *D. Haussler* - 1995 |

| **Spiking neurons and the induction of finite state machines** - *Thomas Natschläger and Wolfgang Maass* - 2002 |

| **Srtuctural machine learning with Galois lattice and graphs** - *Michel Liquiere and Jean Sallantin* - 1998 |

| **Stability Analysis of Learning Algorithms for Blind Source Separation** - *Shun-ichi Amari, Tian-ping Chen and Andrzej Cichocki* - 1997 |

| **Stability and Looping in Connectionist Models with Assymmetric Weights** - *S. Porat* - March 1987 |

| **Stable function approximation in dynamic programming** - *Geoffrey J. Gordon* - 1995 |

| **Stacked Regressions** - *Leo Breiman* - 1996 |

| **Stacking bagged and dagged models** - *Kai Ming Ting and Ian H. Witten* - 1997 |

| **The stastical mechanics of learning a rule** - *T. L. H. Watkin, A. Rau and M. Biehl* - 1993 |

| **State-based Classification of Finger Gestures from Electromyographic Signals** - *Peter Ju, Leslie Pack Kaelbling and Yoram Singer* - 2000 |

| **Statistical and Neural Approaches for Estimating Parameters of a Speckle Model Based on the Nakagami Distribution** - *Mark P. Wachowiak, Renata Smol\'ıková, Mariofanna G. Milanova and Adel S. Elmaghraby* - 2001 |

| **A statistical approach to decision tree modeling** - *M. I. Jordan* - 1994 |

| **A Statistical Approach to Learning and Generalization in Layered Neural Networks** - *E. Levin, N. Tishby and S. A. Solla* - 1990 |

| **A Statistical Approach to Learning and Generalization in Neural Networks** - *E. Levin, N. Tishby and S. Solla* - 1989 |

| **A Statistical Approach to Solving the EBL Utility Problem** - *Russell Greiner and Igor Jurišica* - 1992 |

| **Statistical Mechanics of Online Learning of Drifting Concepts: A Variational Approach** - *Renato Vicente, Osame Kinouchi and Nestor Caticha* - 1998 |

| **Statistical Methods for Analyzing Speedup Learning Experiments** - *Oren Etzioni and Ruth Etzioni* - 1994 |

| **Statistical Models for Text Segmentation** - *Doug Beeferman, Adam Berger and John D. Lafferty* - 1999 |

| **Statistical Properties and Adaptive Tuning of Support Vector Machines** - *Yi Lin, Grace Wahba, Hao Zhang and Yoonkyung Lee* - 2002 |

| **Statistical queries and faulty PAC oracles** - *S. E. Decatur* - 1993 |

| **Statistical Sufficiency for Classes in Empirical L**_{2} Spaces - *Shahar Mendelson and Naftali Tishby* - 2000 |

| **Statistical theory of generalization (abstract)** - *Vladimir Vapnik* - 1996 |

| **Statistical Theory of Learning a Rule** - *G'eza Györgi and Naftali Tishby* - 1990 |

| **Statistics of Flow Vectors and Its Application to the Voting Method for the Detection of Flow Fields** - *Atsushi Imiya and Keisuke Iwawaki* - 2001 |

| **Statistification or Mystification? The Need for Statistical Thought in Visual Data Mining** - *Antony Unwin* - 2001 |

| **A stochastic approach to genetic information processing** - *Akihiko Konagaya* - 1993 |

| **Stochastic Complexity and Modeling** - *J. Rissanen* - 1986 |

| **Stochastic Complexity and Sufficient Statistics** - *J. Rissanen* - 1986 |

| **Stochastic Complexity in Learning** - *Jorma Rissanen* - 1997 |

| **Stochastic Complexity in Statistical Inquiry** - *J. Rissanen* - 1989 |

| **Stochastic Context-Free Grammars for tRNA modeling** - *Yasubumi Sakakibara, Michael Brown, Richard Hughey, I. Saira Mian, Kimmen Sjölander, Rebecca C. Underwood and David Haussler* - 1994 |

| **Stochastic Finite Learning** - *Thomas Zeugmann* - 2001 |

| **Stochastic Finite Learning of the Pattern Languages** - *Peter Rossmanith and Thomas Zeugmann* - 2001 |

| **Stochastic Grammatical Inference of Text Database Structure** - *Matthew Young-Lai and Frank WM. Tompa* - 2000 |

| **Stochastic Inference of Regular Tree Languages** - *Rafael C. Carrasco, Jose Oncina and Jorge Calera-Rubio* - 2001 |

| **Stochastic inference of regular tree languages** - *Rafael C. Carrasco, Jose Oncina and Jorge Calera* - 1998 |

| **Stochastic Relaxation Methods for Image Restoration and Expert Systems** - *S. Geman* - 1986 |

| **Stochastic resonance with adaptive fuzzy systems** - *Sanya Mitaim and Bart Kosko* - 1998 |

| **A stochastic search approach to grammar induction** - *Hugues Juillé and Jordan B. Pollack* - 1998 |

| **Stochastic simple recurrent neural networks** - *Mostefa Golea, Masahiro Matsuoka and Yasubumi Sakakibara* - 1996 |

| **Strategies for Teaching Layered Networks Classification Tasks** - *B. S. Wittner and J. S. Denker* - 1988 |

| **Strategies in Combined Learning via Logic Programs** - *E. Lamma, F. Riguzzi and L. M. Pereira* - 2000 |

| **Strategy Under the Unknown Stochastic Environment: The Nonparametric Lob-Pass Problem** - *K. Hiraoka and S. Amari* - 1998 |

| **Stratified Inductive Hypothesis Generation** - *Zs. Szabó* - 1986 |

| **The strength of noninclusions for teams of finite learners** - *M. Kummer* - 1994 |

| **The Strength of Weak Learnability** - *Robert E. Schapire* - 1990 |

| **Strong Entropy Concentration, Game Theory and Algorithmic Randomness** - *Peter Grünwald* - 2001 |

| **Strong minimax lower bounds for learning** - *András Antos and Gábor Lugosi* - 1998 |

| **Strong monotonic and set-driven inductive inference** - *Sanjay Jain* - 1997 |

| **Strong Separation of Learning Classes** - *J. Case, K. J. Chen and S. Jain* - 1992 |

| **Structural measures for games and process control in the branch learning model** - *Matthias Ott and Frank Stephan* - 2000 |

| **Structural Modelling with Sparse Kernels** - *S. R. Gunn and J. S. Kandola* - 2002 |

| **Structural Results about Exact Learning with Unspecified Attribute Values** - *Andreas Birkendorf, Norbert Klasner, Christian Kuhlmann and Hans Ulrich Simon* - 2000 |

| **Structural Results About On-line Learning Models With and Without Queries** - *Peter Auer and Philip M. Long* - 1999 |

| **Structural risk minimization over data-dependent hierarchies** - *J. Shawe-Taylor and P. L. Bartlett* - 1998 |

| **Structured Prioritized Sweeping** - *Richard Dearden* - 2001 |

| **Structured Weight-Based Prediction Algorithms** - *Akira Maruoka and Eiji Takimoto* - 1998 |

| **Structure in the Space of Value Functions** - *David Foster and Peter Dayan* - 2002 |

| **The Structure of Intrinsic Complexity of Learning** - *Sanjay Jain and Arun Sharma* - 1997 |

| **The Structure of Intrinsic Complexity of Learning** - *Sanjay Jain and Arun Sharma* - 1995 |

| **The Structure of Scientific Discovery: From a Philosophical Point of View** - *Keiichi Noé* - 2001 |

| **Structuring Neural Networks and PAC Learning** - *E. Pippig* - 1995 |

| **Studies on Inductive Inference from Positive Data** - *T. Shinohara* - 1986 |

| **A Study of Explanation-Based Methods for Inductive Learning** - *Nicholas S. Flann and Thomas G. Dietterich* - 1989 |

| **A Study of Grammatical Inference** - *J. J. Horning* - 1969 |

| **A Study of Inductive Inference machines** - *M. Fulk* - 1985 |

| **A Study of Reinforcement Learning in the Continuous Case by the Means of Viscosity Solutions** - *Rémi Munos* - 2000 |

| **A Study of Scaling and Generalization in Neural Networks** - *S. Ahmad* - September 1988 |

| **A Study on the Performance of Large Bayes Classifier** - *Dimitris Meretakis, Hongjun Lu and Beat Wüthrich* - 2000 |

| **The subset principle is an intensional principle** - *K. Wexler* - 1993 |

| **Successes, Failures, and New Directions in Natural Language Learning** - *Claire Cardie* - 2001 |

| **Suggestions for Genetic A.I.** - *G. L. Drescher* - February 1980 |

| **Summary of the panel discussion** - *D. Angluin, L. Birnbaum, J. Feldman, R. Rivest and L. Valiant* - 1988 |

| **Supervised and unsupervised discretization of continuous features** - *James Dougherty, Ron Kohavi and Mehran Sahami* - 1995 |

| **Supervised learning and systems with excess degrees of freedom** - *M. I. Jordan* - May 1988 |

| **Supervised Learning of Probability Distributions by Neural Networks** - *E. Baum and F. Wilczek* - 1988 |

| **Supervised learning using labeled and unlabeled examples** - *Geoffrey Towell* - 1997 |

| **Supervised Versus Unsupervised Binary-Learning by Feedforward Neural Networks** - *Nathalie Japkowicz* - 2001 |

| **Supporting Start-to-Finish Development of Knowledge Bases** - *Ray Bareiss, Bruce W. Porter and Kenneth S. Murray* - 1989 |

| **Support Vector Machine Active Learning with Applications to Text Classification** - *Simon Tong and Daphne Koller* - 2000 |

| **Support Vector Machines for Classification in Nonstandard Situations** - *Yi Lin, Yoonkyung Lee and Grace Wahba* - 2002 |

| **Support-vector networks** - *Corinna Cortes and Vladimir Vapnik* - 1995 |

| **Support Vectors for Reinforcement Learning** - *Thomas G. Dietterich and Xin Wang* - 2001 |

| **A supra-classifier architecture for scalable knowledge reuse** - *Kurt D. Bollacker and Joydeep Ghosh* - 1998 |

| **A survey of computational learning theory** - *P. Laird* - 1990 |

| **A survey of Inductive Inference: Theory and Methods** - *D. Angluin and C. H. Smith* - September 1983 |

| **A Survey of Inductive Inference with an Emphasis on Learning via Queries** - *William Gasarch and Carl H. Smith* - 1997 |

| **A survey of results in grammatical inference** - *A. W. Biermann and J. A. Feldman* - 1972 |

| **A survey of the synthesis of LISP programs from examples** - *D. R. Smith* - 1982 |

| **Symbiosis in multimodal concept learning** - *Jukka Hekanaho* - 1995 |

| **Symbolic and Neural Learning Algorithms: An Experimental Comparison** - *Jude W. Shavlik, Raymond J. Mooney and Geoffrey G. Towell* - 1991 |

| **Symbolic Discriminant Analysis for Mining Gene Expression Patterns** - *Jason H. Moore, Joel S. Parker and Lance W. Hahn* - 2001 |

| **Symmetry in Markov Decision Processes and its Implications for Single Agent and Multiagent Learning** - *Martin Zinkevich and Tucker Balch* - 2001 |

| **Synergy of clustering multiple backpropagation networks** - *N. Lincoln and J. Skrzypek* - 1989 |

| **The syntactic inference problem for D0L sequences** - *P. G. Doucet* - 1974 |

| **Syntactic Methods in Pattern Recognition** - *K. S. Fu* - 1974 |

| **Syntactic Pattern Recognition, An Introduction** - *R. C. Gonzalez and M. G. Thomason* - 1978 |

| **Syntactic Pattern Recognition, Applications** - *K. S. Fu* - 1977 |

| **Synthesis Algorithm for Recursive Processes by ***mu*-calculus - *Shigemoto Kimura, Atsushi Togashi and Norio Shiratori* - 1994 |

| **Synthesising Inductive Expertise** - *Daniel N. Osherson, Michael Stob and Scott Weinstein* - 1988 |

| **The synthesis of language learners** - *Ganesh R. Baliga, John Case and Sanjay Jain* - 1999 |

| **Synthesis of LISP programs from examples** - *S. Hardy* - 1975 |

| **Synthesis of real time acceptors** - *Amr F. Fahmy and A. W. Biermann* - 1993 |

| **Synthesis of Rewrite Programs by Higher-Order and Semantic Unification** - *M. Hagiya* - 1991 |

| **Synthesis of UNIX Programs Using Derivational Analogy** - *Sanjay Bhansali and Mehdi T. Harandi* - 1993 |

| **Synthesizing Context Free Grammars from Sample Strings Based on Inductive CYK Algorithm** - *Katsuhiko Nakamura and Takashi Ishiwata* - 2000 |

| **Synthesizing enumeration techniques for language learning** - *Ganesh R. Baliga, John Case and Sanjay Jain* - 1996 |

| **Synthesizing Learners Tolerating Computable Noisy Data** - *John Case and Sanjay Jain* - 2001 |

| **Synthesizing Learners Tolerating Computable Noisy Data** - *John Case and Sanjay Jain* - 1998 |

| **Synthesizing noise-tolerant language learners** - *John Case, Sanjay Jain and Arun Sharma* - 1997 |

| **Synthesizing noise-tolerant language learners** - *John Case, Sanjay Jain and Arun Sharma* - 2001 |

| **Synthetic Neural Modelling: Comparisons of Population and Connectionist Approaches** - *Jr G. N. Reeke, O. Sporns and G. M. Edelman* - 1989 |

| **System Identification Via State Characterization** - *E. M. Gold* - 1972 |

| **Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists** - *D. N. Osherson, M. Stob and S. Weinstein* - 1986 |

| **Systems that Learn: An Introduction to Learning Theory, second edition** - *Sanjay Jain, Daniel Osherson, James S. Royer and Arun Sharma* - 1999 |