| **Face Detection by Aggregated Bayesian Network Classifiers** - *Thang V. Pham, Marcel Worring and Arnold W. M. Smeulders* - 2001 |

| **Factorial hidden Markov models** - *Zoubin Ghahramani and Michael I. Jordan* - 1997 |

| **FAM-Based Fuzzy Interence for Detecting Shot Transitions** - *Seok-Woo Jang, Gyo-young Kim and Hyung-Il Choi* - 2001 |

| **A Fast Algorithm for Discovering Optimal String Patterns in Large Text Databases** - *Hiroki Arimura, Atsushi Wataki, Ryoichi Fujino and Setsuo Arikawa* - 1998 |

| **Fast and efficient reinforcement learning with truncated temporal differences** - *Pawel Cichosz and Jan J. Mulawka* - 1995 |

| **A fast, bottom-up decision tree pruning algorithm with near-optimal generalization** - *Michael Kearns and Yishay Mansour* - 1998 |

| **Fast Distribution-Specific Learning** - *Dale Schuurmans and Russell Greiner* - 1997 |

| **Fast effective rule induction** - *William W. Cohen* - 1995 |

| **Faster Near-Optimal Reinforcement Learning: Adding Adaptiveness to the E**^{3} Algorithm - *Carlos Domingo* - 1999 |

| **Fast identification of geometric objects with membership queries** - *W. J. Bultman and W. Maass* - 1991 |

| **Fast Learning in Multi-Resolution Hierarchies** - *J. Moody* - 1989 |

| **Fast Learning in Networks of Locally-Tuned Processing Units** - *J. Moody and C. Darken* - 1989 |

| **Fast Learning of k-term DNF Formulas with Queries** - *A. Blum and S. Rudich* - 1992 |

| **Fast learning of k-term DNF formulas with queries** - *Avrim Blum and Stephen Rudich* - 1995 |

| **Fast Online Q(***lambda*) - *Marco Wiering and Jürgen Schmidhuber* - 1998 |

| **Fast perceptual learning of motion in humans and neural networks** - *Lucia M. Vaina, Venkrataraman Sundareswaran and John G. Harris* - 1997 |

| **Fast Probabilistic Algorithms for Hamiltonian Circuits and Matchings** - *D. Angluin and L. G. Valiant* - 1979 |

| **Fat-shattering and the learnability of real-valued functions** - *P. L. Bartlett, P. M. Long and R. C. Williamson* - 1994 |

| **Fat-shattering and the learnability of real-valued functions** - *Peter L. Bartlett, Philip M. Long and Robert C. Williamson* - 1996 |

| **Feasible Direction Decomposition Algorithms for Training Support Vector Machines** - *Pavel Laskov* - 2002 |

| **Feature-Based Methods for Large Scale Dynamic Programming** - *John N. Tsitsiklis and Benjamin van Roy* - 1996 |

| **FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness** - *Joseph O'Sullivan, John Langford, Rich Caruana and Avrim Blum* - 2000 |

| **Feature Construction during Tree Learning** - *G. Mehlsam, H. Kaindl and W. Barth* - 1995 |

| **Feature Construction with Version Spaces for Biochemical Applications** - *Stefan Kramer and Luc De Raedt* - 2001 |

| **Feature Discovery by Competitive Learning** - *D. E. Rumelhart and D. Zipser* - 1985 |

| **Feature engineering and classifier selection: A case study in Venusian volcano detection** - *Lars Asker and Richard Maclin* - 1997 |

| **Feature engineering for text classification** - *Sam Scott and Stan Matwin* - 1999 |

| **Feature Extraction Using an Unsupervised Neural Network** - *N. Intrator* - 1990 |

| **Feature Generation Using General Constructor Functions** - *Shaul Markovitch and Dan Rosenstein* - 2002 |

| **Featureless Pattern Recognition in an Imaginary Hilbert Space and Its Applicaton to Protein Fold Classification** - *Vadim Mottl, Sergey Dvoenko, Oleg Seredin, Casimir Kulikowski and Ilya Muchnik* - 2001 |

| **Feature Selection and Incremental Learning of Probabilistic Concept Hierarchies** - *Louis Talavera* - 2000 |

| **Feature selection as a preprocessing step for hierarchical clustering** - *Luis Talavera* - 1999 |

| **Feature Selection for a Real-World Learning Task** - *D. Kollmar and D. H. Hellmann* - 2001 |

| **Feature Selection for High-Dimensional Genomic Microarray Data** - *Eric P. Xing, Michael I. Jordan and Richard M. Karp* - 2001 |

| **Feature selection for unbalanced class distribution and Naive Bayes** - *Dunja Mladenić and Marko Grobelnik* - 1999 |

| **Feature Selection Using Rough Sets Theory** - *Maciej Modrzejewski* - 1993 |

| **Feature selection via concave minimization and support vector machines** - *Paul S. Bradley and Olvi L. Mangasarian* - 1998 |

| **Feature Selection vs Theory Reformulation: A Study of Genetic Refinement of Knowledge-based Neural Networks** - *Brendan Davis Burns and Andrea Pohoreckyj-Danyluk* - 2000 |

| **Feature Subset Selection and Order Identification for Unsupervised Learning** - *Jennifer G. Dy and Carla E. Brodley* - 2000 |

| **Feedforward Neural Networks in Reinforcement Learning Applied to High-Dimensional Motor Control** - *Rémi Coulom* - 2002 |

| **A few results on the complexity of classes of identifiable recursive function sets** - *R. Klette* - 1977 |

| **Filter likelihoods and exhaustive learning** - *David H. Wolpert* - 1994 |

| **Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection** - *Sanmay Das* - 2001 |

| **Finding a Minimal 1-DNF Consistent with a Positive Sample is LOGSNP-Complete** - *F. Denis* - 1999 |

| **Finding a One-Variable Pattern from Incomplete Data** - *Hiroshi Sakamoto* - 1998 |

| **Finding Best Patterns Practically** - *Ayumi Shinohara, Masayuki Takeda, Setsuo Arikawa, Masahiro Hirao, Hiromasa Hoshino and Shunsuke Inenaga* - 2001 |

| **Finding Minimal Generalizations for Unions of Pattern Languages and Its Application to Inductive Inference from Positive Data** - *H. Arimura, T. Shinohara and S. Otsuki* - 1994 |

| **Finding Natural Clusters Through Entropy Minimization** - *R. S. Wallace* - June 1989 |

| **Finding of Signal and Image by Integer-Type Haar Lifting Wavelet Transform** - *Koichi Niijima and Shigeru Takano* - 2001 |

| **Finding Patterns Common to a Set of Strings** - *D. Angluin* - 1980 |

| **Finding Relevant Variables in PAC Model with Membership Queries** - *Jun Tarui David Guijarro and Tatsuie Tsukiji* - 1999 |

| **Finding tree patterns consistent with positive and negative examples using queries** - *Hiroki Ishizaka, Hiroki Arimura and Takeshi Shinohara* - 1998 |

| **Finding Variational Structure in Data by Cross-Entropy Optimization** - *Matthew Brand* - 2000 |

| **Finite Automata, Behavior and Synthesis** - *B. A. Trakhtenbrot and Ya. M. Barzdin* - 1973 |

| **Finite Identification of Functions by Teams with Success Ratio ***frac*12 and Above - *Sanjay Jain, Arun Sharma and Mahendran Velauthapillai* - 1995 |

| **Finite identification of general recursive functions by probabilistic strategies** - *R. V. Freivalds* - 1979 |

| **Finite learning by a team** - *S. Jain and A. Sharma* - 1990 |

| **FINite Learning Capabilities and Their Limits** - *Robert Daley and Bala Kalyanasundaram* - 1997 |

| **Finiteness results for sigmoid** - *A. Macintyre and E. D. Sontag* - 1993 |

| **Finite-time Analysis of the Multiarmed Bandit Problem** - *Peter Auer, Nicolò Cesa-Bianchi and Paul Fischer* - 2002 |

| **Finite-time regret bounds for the multiarmed bandit problem** - *Nicolò Cesa-Bianchi and Paul Fischer* - 1998 |

| **First Nearest Neighbor Classification on Frey and Slate's Letter Recognition Problem** - *Terence C. Fogarty* - 1992 |

| **First Order Regression** - *Aram Karaliccaron and Ivan Bratko* - 1997 |

| **First-Order Rule Induction for the Recognition of Morphological Patterns in Topographic Maps** - *D. Malerba, F. Esposito, A. Lanza and F. A. Lisi* - 2001 |

| **First thoughts on grammatical inference** - *J. A. Feldman* - 1967 |

| **Fitness Distance Correlation of Neural Network Error Surfaces: A Scalable, Continuous Optimization Problem** - *Marcus Gallagher* - 2001 |

| **Fixed Points of Approximate Value Iteration and Temporal-Difference Learning** - *Daniela Pucci de Farias and Benjamin Van Roy* - 2000 |

| **Flattening and Implication** - *Kouichi Hirata* - 1999 |

| **Flattening and Saturation: Two Representation Changes for Generalization** - *Céline Rouveirol* - 1994 |

| **A Flexible Modeling of Global Plasma Profile Deduced from Wave Data** - *Yoshitaka Goto, Yoshiya Kasahara and Toru Sato* - 2001 |

| **FOIL: A Midterm Report** - *J. Ross Quinlan and R. Mike Cameron-Jones* - 1993 |

| **FONN: Combining first order logic with connectionist learning** - *Marco Botta, Attilo Giordana and Roberto Piola* - 1997 |

| **For every generalization action is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance** - *R. Bharat Rao, Diana Gordon and William Spears* - 1995 |

| **Foreword** - *Ming Li* - 2001 |

| **Foreword** - *T. Zeugmann* - 1997 |

| **Foreword** - *Rolf Wiehagen and Thomas Zeugmann* - 2001 |

| **Forgetting Exceptions is Harmful in Language Learning** - *Walter Daelemans, Antal van den Bosch and Jakub Zavrel.* - 1999 |

| **A Formalism for Relevance and Its Application in Feature Subset Selection** - *David A. Bell and Hui Wang* - 2000 |

| **Formal Learning Theory** - *D. Osherson and S. Weinstein* - 1983 |

| **A Formal Model of Hierarchical Concept-Learning** - *R. L. Rivest and R. Sloan* - 1994 |

| **Formal Models of Language Learning** - *S. Pinker* - 1979 |

| **Formal Principles of Language Acquisition** - *Kenneth Wexler and Peter W. Culicover* - 1980 |

| **A formal study of learning via queries** - *O. Watanabe* - 1990 |

| **A Formal Theory of Inductive Causation** - *J. Pearl and T. S. Verma* - October 1990 |

| **A Formal Theory of Inductive Inference: Part 1** - *R. J. Solomonoff* - 1964 |

| **A Formal Theory of Inductive Inference: Part 2** - *R. J. Solomonoff* - 1964 |

| **A form of analogy as an abductive inference** - *M. Haraguchi* - 1992 |

| **Forward models: Supervised learning with a distal teacher** - *M. I. Jordan and D. E. Rumelhart* - 1992 |

| **Foundations of Designing Computational Knowledge Discovery Processes** - *Yoshinori Tamada, Hideo Bannai, Osamu Maruyama and Satoru Miyano* - 2001 |

| **Four Types of Learning Curves** - *S. Amari, N. Fujita and S. Shinomoto* - 1992 |

| **Four types of noise in data for PAC Learning** - *R. H. Sloan* - 1995 |

| **A Framework for Average Case Analysis of Conjunctive Learning Algorithms** - *Michael J. Pazzani and Wendy Sarrett* - 1992 |

| **A Framework for Empirical Discovery** - *P. Langley and B. Nordhausen* - 1986 |

| **A framework for incremental learning of logic programs** - *M. R. K. Krishna Rao* - 1997 |

| **A Framework for Learning Rules from Multiple Instance Data** - *Yann Chevaleyre and Jean-Daniel Zucker* - 2001 |

| **A framework for structural risk minimization** - *John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson and Martin Anthony* - 1996 |

| **Free to choose: investigating the sample complexity of active learning of real valued functions** - *Partha Niyogi* - 1995 |

| **Frequencies vs biases: machine learning problems in natural language processing - abstract** - *Fernando C. N. Pereira* - 1994 |

| **Frequencies vs. biases: machine learning problems in natural language processing - abstract** - *F. C. N. Pereira* - 1994 |

| **Friend-or-Foe Q-learning in General-Sum Games** - *Michael L. Littman* - 2001 |

| **From Computational Learning Theory to Discovery Science** - *Osamu Watanabe* - 1999 |

| **From inductive inference to algorithmic learning theory** - *Rolf Wiehagen* - 1993 |

| **From noise-free to noise-tolerant and from on-line to batch learning** - *Norbert Klasner and Hans Ulrich Simon* - 1995 |

| **From on-line to batch learning** - *N. Littlestone* - 1989 |

| **From Specifications to Programs: Induction in the Service of Synthesis** - *Nachum Dershowitz* - 1994 |

| **Functionality in Neural Nets (at AAAI)** - *L. Valiant* - 1988 |

| **Functionality in neural networks** - *L. G. Valiant* - 1988 |

| **Functional models for regression tree leaves** - *Luís Torgo* - 1997 |

| **Function learning from interpolation** - *Martin Anthony and Peter Bartlett* - 1995 |

| **Functions computable in the Limit by Probabilistic Machines** - *R. V. Freivalds* - 1975 |

| **The functions of finite support: a canonical learning problem** - *Rusins Freivalds, Efim Kinber and Carl H. Smith* - 1999 |

| **Funtional Inductive Logic Programming with Queries to the User** - *Francesco Bergadano and Daniele Gunetti* - 1993 |

| **A Further Comparison of Splitting Rules for Decision-Tree Induction** - *Wray Buntine and Tim Niblett* - 1992 |

| **Further Explanation of the Effectiveness of Voting Methods: The Game Between Margins and Weights** - *Vladimir Koltchinskii, Dmitriy Panchenko and Fernando Lozano* - 2001 |

| **A further note on inductive generalization** - *G. D. Plotkin* - 1971 |

| **Further results on the margin distribution** - *John Shawe-Taylor and Nello Cristianini* - 1999 |

| **Fuzzy Analogy Based Reasoning and Classification of Fuzzy Analogies** - *Toshiharu Iwatani, Shun'ichi Tano, Atsushi Inoue and Wataru Okamoto* - 1994 |