| **Ultraconservative Online Algorithms for Multiclass Problems** - *Koby Crammer and Yoram Singer* - 2001 |

| **Understanding Probabilistic Classifiers** - *Ashutosh Garg and Dan Roth* - 2001 |

| **Understanding the Nature of Learning: Issues and Research Directions** - *R. M. Michalski* - 1986 |

| **A Unified Approach to Inductive Logic and Case-Based Reasoning** - *Michael M. Richter* - 1994 |

| **A Unified Bias-Variance Decomposition and its Applications** - *Pedro Domingos* - 2000 |

| **A Unified Framework for Evaluation Metrics in Classification Using Decision Trees** - *Ricardo Vilalta, Mark Brodie, Daniel Oblinger and Irina Rish* - 2001 |

| **A Unified Loss Function in Bayesian Framework for Support Vector Regression** - *Wei Chu, S. Sathiya Keerthi and Chong Jin Ong* - 2001 |

| **Uniform and Non Uniform Predictability** - *R. Freivalds* - 1974 |

| **Uniform Characterizations of polynomial-query learnabilities** - *Yosuke Hayashi, Satoshi Matsumoto, Ayumi Shinohara and Masayuki Takeda* - 1998 |

| **Uniform Characterizations of Various Kinds of Language Learning** - *Shyam Kapur* - 1993 |

| **Uniform-distribution attribute noise learnability** - *Nader H. Bshouty, Jeffrey C. Jackson and Christino Tamon* - 1999 |

| **A Unifying Approach to HTML Wrapper Representation and Learning** - *Gunter Grieser, Klaus P. Jantke, Steffen Lange and Bernd Thomas* - 2000 |

| **A Unifying Approach to Monotonic Language Learning on Informant** - *S. Lange and T. Zeugmann* - 1992 |

| **Unifying Learning Methods by Colored Digraphs** - *Kenichi Yoshida, Hiroshi Motoda and Nitin Indurkhya* - 1993 |

| **Unions of identifiable families of languages** - *Kalvis Apsitis, Rusins Freivalds, Raimonds Simanovskis and Juris Smotrovs* - 1996 |

| **Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks** - *K. Hornik, M. Stinchcombe and H. White* - 1990 |

| **Universal Distributions and Time-Bounded Kolmogorov Complexity** - *Rainer Schuler* - 1999 |

| **Universal forecasting algorithms** - *V. Vovk* - 1992 |

| **A Universal Generalization for Temporal-Difference Learning Using Haar Basis Functions** - *Susumu Katayama, Hajime Kimura and Shigenobu Kobayashi* - 2000 |

| **Universal Goal Seekers** - *E. M. Gold* - 1971 |

| **Universal Grammar and Learnability Theory: The Case of Binding Domains and the `Subset Principle'** - *S. Kapur, B. Lust, W. Harbert and G. Motohardjono* - 1993 |

| **A Universal Inductive Inference Machine** - *Daniel N. Osherson, Michael Stob and Scott Weinstein* - June 1991 |

| **A Universal Method of Scientific Inquiry** - *Daniel N. Osherson, Michael Stob and Scott Weinstein* - 1992 |

| **Universal Portfolios** - *T. M. Cover* - 1991 |

| **Universal portfolio selection** - *V. Vovk and C. Watkins* - 1998 |

| **Universal Portfolios With and Without Transaction Costs** - *Avrim Blum and Adam Kalai* - 1999 |

| **Universal Prediction of Individual Sequences** - *M. Feder, N. Merhav and M. Gutman* - 1992 |

| **A Universal Prior for Integers and Estimation by Minimum Description Length** - *J. Rissanen* - 1983 |

| **Universal sequential learning and decisions from individual data sequences** - *N. Merhav and M. Feder* - 1992 |

| **Univresal sequential Coding of Single Messages** - *Y. M. Shtarkov* - 1987 |

| **Unlearning Helps** - *Ganesh Baliga, John Case, Wolfgang Merkle and Frank Stephan* - 2000 |

| **Unpacking Multi-valued Symbolic Features and Classes in Memory-based Language Learning** - *Antal van den Bosch and Jakub Zavrel* - 2000 |

| **Unsupervised Learning by Probabilistic Latent Semantic Analysis** - *Thomas Hofmann* - 2001 |

| **Unsupervised learning for mobile robot navigation using probabilistic data association** - *Ingemar J. Cox and John J. Leonard* - 1994 |

| **Unsupervised learning in neural computation** - *Erkki Oja* - 2002 |

| **Unsupervised learning of distributions on binary vectors using two layer networks** - *Y. Freund and D. Haussler* - 1991 |

| **Unsupervised learning of multiple motifs in biopolymers using expectation maximization** - *Timothy L. Bailey and Charles Elkan* - 1995 |

| **Unsupervised Learning of Word Segmentation Rules with Genetic Algorithms and Inductive Logic Programming** - *Dimitar Kazakov and Suresh Manandhar* - 2001 |

| **Unsupervised learning using MML** - *Jonathan J. Oliver, Rohan A. Baxter and Chris S. Wallace* - 1996 |

| **Unsupervised Sequence Segentation by a Mixture of Switching Variable Memory Markov Sources** - *Yevgeni Seldin, Gill Bejerano and Naftali Tishby* - 2001 |

| **Unsupervised visual learning of three-dimensional objects using a modular network architecture** - *S. Suzuki H. Ando and T. Fujita* - 1999 |

| **Unterklassen in der Familie NUM aller effektiv numerierbaren Mengen von einstelligen allgemein rekursiven Funktionen** - *R. Klette* - 1975 |

| **Upper and Lower Bounds on the Learning Curve for Gaussian Processes** - *Christopher K. I. Williams and Francesco Vivarelli* - 2000 |

| **An upper bound on the loss from approximate optimal-value functions** - *Satinder P. Singh and Richard C. Yee* - 1994 |

| **The use of abstract primitives in representing the meaning of Verbs for understanding metaphors** - *M. Suwa and H. Motoda* - 1992 |

| **Use of Adaptive Networks to Define Highly Predictable Protein Secondary-Structure Classes** - *Alan S. Lapedes, Evan W. Steeg and Robert M. Farber* - 1995 |

| **The Use of Artificial Neural Networks for Phonetic Recognition** - *H. C. Leung* - May 1989 |

| **The Use of Background Knowledge in Decision Tree Induction** - *Marlon Núñez* - 1991 |

| **The use of grammatical inference for designing programming languages** - *S M. M. A. Crespi-Reghizzi and L. Lichten* - 1973 |

| **Use of Reduction Arguments in Determining Popperian FIN-Type Learning Capabilities** - *Robert Daley and Bala Kalyanasundaram* - 1993 |

| **The use of tree derivatives and a sample support parameter for inferring tree systems** - *B. Levine* - 1982 |

| **Using a permutation test for attribute selection in decision trees** - *Eibe Frank and Ian H. Witten* - 1998 |

| **Using a Symbolic Machine Learning Tool to Refine Lexico-syntactic Patterns** - *Emmanuel Morin and Emmanuelle Martienne* - 2000 |

| **Using Attribute Grammars for Description of Inductive Inference Search Space** - *Uğis Sarkans and J. Bārzdiņs* - 1998 |

| **Using communication to reduce locality in distributed multiagent learning** - *Maja J. Mataric* - 1998 |

| **Using Computational Learning Strategies as a Tool for Combinatorial Optimization** - *Andreas Birkendorf and Hans-Ulrich Simon* - 1998 |

| **Using Correspondence Analysis to Combine Classifiers** - *Christopher J. Merz* - 1999 |

| **Using Decision Trees to Construct a Practical Parser** - *Masahiko Haruno, Satoshi Shirai and Yoshifumi Ooyama* - 1999 |

| **Using Dirichlet Mixture Priors to Derive Hidden Markov Models for Protein Families** - *M. P. Brown, R. Hughey, A. Krogh, I. S. Mian, K. Sjölander and D. Haussler* - July 1993 |

| **Using Diversity in Preparing Ensembles of Classifiers Based on Different Feature Subsets to Minimize Generalization Error** - *Gabriele Zenobi and Pádraig Cunningham* - 2001 |

| **Using domain information during the learning of a subsequential transducer** - *José Oncina and Miguel Angel Varó* - 1996 |

| **Using Domain Knowledge on Population Dynamics Modeling for Equation Discovery** - *Ljupco Todorovski and Saso Dzeroski* - 2001 |

| **Using eligibility traces to find the best memoryless policy in partially observable Markov decision processes** - *John Loch and Satinder Singh* - 1998 |

| **Using EM to Learn 3D Models of Indoor Environments with Mobile Robots** - *Yufeng Lui, Rosemary Emery, Deepayan Charabarti, Wolfram Burgard and Sebastian Thrun* - 2001 |

| **Using Error-Correcting Codes for Text Classification** - *Rayid Ghani* - 2000 |

| **Using Experts for Predicting Continuous Outcomes** - *J. Kivinen and M. Warmuth* - 1994 |

| **Using Genetic Algorithms for Concept Learning** - *Kenneth A. De Jong, William M. Spears and Diana F. Gordon* - 1993 |

| **Using genetic search to refine knowledge-based neural networks** - *David W. Opitz and Jude W. Shavlik* - 1994 |

| **Using heuristic search to expand knowledge-based neural networks** - *David W. Opitz and Jude W. Shavlik* - 1995 |

| **Using Heuristics to Speed up Induction on Continuous-Valued Attributes** - *G. Seidelmann* - 1993 |

| **Using Iterated Bagging to Debias Regressions** - *Leo Breiman* - 2001 |

| **Using Knowledge-Based Neural Networks to Improve Algorithms: Refining the Chou-Fasman Algorithm for Protein Folding** - *Richard Maclin and Jude W. Shavlik* - 1993 |

| **Using knowledge-based neural networks to refine roughly-correct information** - *Geoffrey G. Towell and Jude W. Shavlik* - 1994 |

| **Using knowledge to improve N-gram language modelling through the MGGI methodology.** - *Enrique Vidal and David Llorens* - 1996 |

| **Using Knowledge to Speed Learning: A Comparison Knowledge-based Cascade-correlation and Multi-task Learning** - *Thomas R. Shultz and Francois Rivest* - 2000 |

| **Using Kullback-Leibler Divergence in Learning Theory** - *S. Anoulova and S. Pölt* - 1994 |

| **Using Learning by Discovery to Segment Remotely Sensed Images** - *Leen-Kiat Soh and Costas Tsatsoulis* - 2000 |

| **Using learning for approximation in stochastic processes** - *Daphne Koller and Raya Fratkina* - 1998 |

| **Using multidimensional projection to find relations** - *Eduardo Pérez and Larry A. Rendell* - 1995 |

| **Using Multiple Clause Constructors in Inductive Logic Programming for Semantic Parsing** - *Lappoon R. Tang and Raymond J. Mooney* - 2001 |

| **Using Multiple Levels of Learning and Diverse Evidence Sources to Uncover Coordinately Controlled Genes** - *Mark Craven, David Page, Jude Shavlik, Joseph Bockhorst and Jeremy Glasner* - 2000 |

| **Using Natural Language Processing and Discourse Features to Identify Understanding Errors in a Spoken Dialogue System** - *Marilyn Walker, Jerry Wright and Irene Langkilde* - 2000 |

| **Using neural networks to modularize software** - *Robert W. Schwanke and Joseé Stephen Hanson* - 1994 |

| **Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space** - *Shumeet Baluja and Scott Davies* - 1997 |

| **Using output codes to boost multiclass learning problems** - *Robert E. Schapire* - 1997 |

| **Using queries to identify ***mu*-formulas - *D. Angluin* - 1989 |

| **Using reinforcement learning to spider the web efficiently** - *Jason Rennie and Andrew Kachites McCallum* - 1999 |

| **Using sampling and queries to extract rules from trained neural networks** - *Mark W. Craven and Jude W. Shavlik* - 1994 |

| **Using Subclasses to Improve Classification Learning** - *Achim Hoffmann, Rex Kwok and Paul Compton* - 2001 |

| **Using symbol clustering to improve probabilistic automaton inference** - *Pierre Dupont and Lin Chase* - 1998 |

| **Using telltales in developing program test sets** - *J. Cherniavsky and C. Smith* - 1986 |

| **Using the Genetic Algorithm to Reduce the Size of a Nearest-Neighbor Classifier and to Select Relevant Attributes** - *Antonin Rozsypal and Miroslav Kubat* - 2001 |

| **Using the Minimum Description Length Principle to Infer Reduced Ordered Decision Graphs** - *Arlindo L. Oliveira and Alberto Sangiovanni-Vincentelli* - 1996 |

| **Using Upper Confidence Bounds for Online Learning** - *Peter Auer* - 2000 |

| **Using Vapnik-Chervonenkis Dimension to Analyze the Testing Complexity of Program Segments** - *Kathleen Romanik and Jeffrey Scott Vitter* - August 1996 |

| **The Utility of Knowledge in Inductive Learning** - *Michael Pazzani and Dennis Kibler* - 1992 |

| **The Utilization of Context Signals in the Analysis of ABR Potentials by Application of Neural Networks** - *Andrzej Izworski, Ryszard Tadeusiewicz and Andrzej Paslawski* - 2000 |