| **C4.5: Programs for machine learning** - *J. R. Quinlan* - 1993 |

| **Calculation of the learning curve of Bayes optimal classification algorithm for learning a perceptron with noise** - *M. Opper and D. Haussler* - 1991 |

| **A Calculus for Logical Clustering** - *Shuo Bai* - 1994 |

| **Can Complexity Theory Benefit from Learning Theory?** - *Tibor Hegedüs* - 1993 |

| **Can complexity theory benefit from learning theory? (Extended Abstract)** - *T. Hegedűs* - 1993 |

| **Can Finite Samples Detect Singularities of Real-Valued Functions?** - *Shai Ben-David* - 1998 |

| **Can Machine Learning Offer Anything to Expert Systems?** - *Bruce G. Buchanan* - 1989 |

| **Can neural networks do better than the Vapnik-Chervonenkis bounds?** - *G. Tesauro and D. Cohn* - 1991 |

| **The canonical distortion measure for vector quantization and function approximation** - *Jonathan Baxter* - 1997 |

| **Can PAC Learning Algorithms Tolerate Random Attribute Noise?** - *S. A. Goldman and R. H. Sloan* - 1995 |

| **Capabilities of fallible FINite learning** - *R. Daley, B. Kalyanasundaram and M. Velauthapillai* - 1993 |

| **Capabilities of probabilistic learners with bounded mind changes** - *R. Daley and B. Kalyanasundaram* - 1993 |

| **Capacity and Error Estimates for Boolean Classifiers with Limited Complexity** - *J. Pearl* - October 1979 |

| **Careful abstraction from instance families in memory-based language learning** - *Antal Van Den Bosch* - 1999 |

| **The Cascade-Correlation Learning Architecture** - *S. E. Fahlman and C. Lebiere* - 1990 |

| **Cascade Generalization** - *João Gama and Pavel Brazdil* - 2000 |

| **The case against accuracy estimation for comparing induction algorithms** - *Foster Provost, Tom Fawcett and Ron Kohavi* - 1998 |

| **Case-based acquisition of place knowledge** - *Pat Langley and Karl Pfleger* - 1995 |

| **Case based learning in inductive inference** - *K. P. Jantke* - 1992 |

| **Case-Based Learning: Predictive Features in Indexing** - *C. M. Seifert, K. J. Hammond, H. M. Johnson, T. M. Converse, T. F. Mcdoughal and S. W. Vanderstoep* - 1994 |

| **Case-Based Representation and Learning of Pattern Languages** - *Klaus P. Jantke and Steffen Lange* - 1995 |

| **A case study in the use of theory revision in requirements validation** - *T. L. McCluskey and M. M. West* - 1998 |

| **A case study of explanation-based control** - *Gerald DeJong* - 1995 |

| **Category, Measure, Inductive Inference: A Triality Theorem and Its Applications** - *Rusins Freivalds and Carl H. Smith* - 2002 |

| **Causal discovery via MML** - *Chris Wallace, Kevin B. Korb and Honghua Dai* - 1996 |

| **Central Limit Theorems for Empirical Measures** - *R. M. Dudley* - 1978 |

| **The challenge of revising an impure theory** - *Russell Greiner* - 1995 |

| **Challenges in machine learning for text classification** - *David D. Lewis* - 1996 |

| **Challenges of the Email Domain for Text Classification** - *Jake D. Brutlag and Christopher Meek* - 2000 |

| **The characterisation of predictive accuracy and decision combination** - *Kai Ming Ting* - 1996 |

| **Characterisitc Sets for Polynomial Grammatical Inference** - *Colin de la Higuera* - 1997 |

| **Characteristic properties of recognizable classes of recursive functions** - *R. Wiehagen and W. Liepe* - 1976 |

| **Characteristic sets for polynominal grammatical inference** - *Colin De La Higuera* - 1996 |

| **Characteristic Sets for Unions of Regular Pattern Languages and Compactness** - *Masako Sato, Yasuhito Mukouchi and Dao Zheng* - 1998 |

| **Characterization of a class of functions synthesized by a Summers-like method using a B.M.W. matching technique** - *J. P. Jouannaud and Y. Kodratoff* - 1979 |

| **Characterization of finite identification** - *Y. Mukouchi* - 1992 |

| **Characterization of language learning from informant under various monotonicity constraints** - *S. Lange and T. Zeugmann* - 1994 |

| **Characterization of pattern languages** - *Y. Mukouchi* - 1992 |

| **Characterization problems in the theory of inductive inference** - *R. Wiehagen* - 1978 |

| **Characterizations of learnability for classes of { 0,***dots* ,n }-valued functions - *S. Ben-David, N. Cesa-Bianchi and P. M. Long* - 1992 |

| **Characterizations of learnability for classes of {0,***dots*, n}-valued functions - *Shai Ben-David, Nicolò Cesa-Bianchi, David Haussler and Philip M. Long* - 1995 |

| **Characterizations of monotonic and dual monotonic language learning** - *T. Zeugmann, S. Lange and S. Kapur* - 1995 |

| **Characterizing language identification by standardizing operations** - *Sanjay Jain and Arun Sharma* - 1994 |

| **Characterizing Language Learning in Terms of Computable Numberings** - *Sanjay Jain and Arun Sharma* - 1997 |

| **Characterizing Model Errors and Differences** - *Stephen D. Bay and Michael J. Pazzani* - 2000 |

| **Characterizing PAC-Learnability of Semilinear Sets** - *Naoki Abe* - 1995 |

| **Characterizing Rational Versus Exponential Learning Curves** - *Dale Schuurmans* - 1997 |

| **Characterizing Sufficient Expertise for Learning System Validation** - *Gunter Grieser, Klaus P. Jantke and Steffen Lange* - 1998 |

| **Characterizing the generalization performance of model selection strategies** - *Dale Schuurmans, Lyle H. Ungar and Dean P. Foster* - 1997 |

| **Charakteristische Eigenschaften von erkennbaren Klassen rekursiver Funktionen** - *R. Wiehagen and W. Liepe* - 1976 |

| **Chemical Discovery as Belief Revision** - *Donald Rose and Pat Langley* - 1986 |

| **CHILD: a first step towards continual learning** - *Mark B. Ring* - 1997 |

| **Children, adults, and machines as discovery systems** - *David Klahr* - 1994 |

| **Choice of Basis for Laplace Approximation** - *David J. C. MacKay* - 1998 |

| **Choosing a learning team: a topological approach** - *K. Aps\=ıtis, R. Freivalds and C. Smith* - 1994 |

| **Choosing a reliable hypothesis** - *W. Evans, S. Rajagopalan and U. Vazirani* - 1993 |

| **Choosing Multiple Parameters for Support Vector Machines** - *Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet and Sayan Mukherjee* - 2002 |

| **Chunking in Soar: The Anatomy of a General Learning Mechanism** - *John E. Laird, Paul S. Rosenbloom and Allen Newell* - 1986 |

| **Classes with Easily Learnable Subclasses** - *Sanjay Jain, Wolfram Menzel and Frank Stephan* - 2002 |

| **Classical Brouwer-Heyting-Kolmogorov interpretation** - *Masahiko Sato* - 1997 |

| **CLASSIC Learning** - *Michael Frazier and Leonard Pitt* - 1996 |

| **Classification Accuracy Based on Observed Margin** - *John Shawe-Taylor* - 1998 |

| **Classification and Regression Trees** - *L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone* - 1984 |

| **Classification by feature partitioning** - *H. Altay Güvenir and Izzet Sirin* - 1996 |

| **Classification of Individuals with Complex Structure** - *A. F. Bowers, C. Giraud-Carrier and J. W. Lloyd* - 2000 |

| **Classification of Object Sequences Using Syntactical Structure** - *Atsuhiro Takasu* - 2001 |

| **Classification of Predicates and Languages** - *R. Wiehagen, C. H. Smith and T. Zeugmann* - 1994 |

| **Classification on Data with Biased Class Distribution** - *Slobodan Vucetic and Zoran Obradovic* - 2001 |

| **Classification using information** - *William Gasarch, Mark G. Pleszkoch, Frank Stephan and Mahendran Velauthapillai* - 1998 |

| **Classification Using Information** - *William I. Gasarch, Mark G. Pleszkoch and Mahendran Velauthapillai* - 1994 |

| **Classification using ***Phi*-machines and constructive function approximation - *Doina Precup and Paul E. Utgoff* - 1998 |

| **Classification with Intersecting Rules** - *Tony Lindgren and Henrik Boström* - 2002 |

| **Classification with Multiple Latent Variable Models using Maximum Entropy Discrimination** - *Machiel Westerdijk and Wim Wiegerinck* - 2000 |

| **Classifier Systems and the Animat Problem** - *Stewart W. Wilson* - 1987 |

| **Classifier Systems that Learn Internal World Models** - *Lashon B. Booker* - 1988 |

| **Classifying Predicates and Languages** - *Carl H. Smith, Rolf Wiehagen and Thomas Zeugmann* - 1997 |

| **Classifying recursive predicates and languages** - *R. Wiehagen, C. H. Smith and T. Zeugmann* - 1995 |

| **A Class of Asymptotically Stable Algorithms for Learning-Rate Adaptation** - *S. M. Rüger* - 1998 |

| **A class of functions synthesized from a finite number of examples and a LISP program scheme** - *Y. Kodratoff* - 1979 |

| **A class of synthesizeable LISP programs** - *D. R. Smith* - 1977 |

| **Clausal Discovery** - *Luc De Raedt and Luc Dehaspe* - 1997 |

| **Closedness properties in ex-identification** - *Kalvis Aps\=ıtis, Rīsiņs Freivalds, Raimonds Simanovskis and Juris Smotrovs* - 2001 |

| **Closedness Properties in EX-identification of Recursive Functions** - *K. Aps\=ıtis, R. Freivalds, R. Simanovskis and J. Smotrovs* - 1998 |

| **Closedness properties in team learning of recursive functions** - *Juris Smotrovs* - 1997 |

| **Clustered Partial Linear Regression** - *Luíz Torgo and Joaquim Pinto da Costa* - 2000 |

| **Clustering Continuous Time Series** - *Paola Sebastiani and Marco Ramoni* - 2001 |

| **Clustering of sequences using minimum grammar compexity criterion** - *Ana L. N. Fred* - 1996 |

| **Clustering the Users of Large Web Sites into Communities** - *Georgios Paliouras, Christos Papatheodorou, Vangelis Karkaletsis and Constantine D. Spyropoulos* - 2000 |

| **Clustering with Instance-level Constraints** - *Kiri Wagstaff and Claire Cardie* - 2000 |

| **The CN2 Induction Algorithm** - *Peter Clark and Tim Niblett* - 1989 |

| **COBBIT - A Control Procedure for COBWEB in the Presence of Concept Drift** - *Fredrik Kilander and Carl Gustaf Jansson* - 1993 |

| **Coding Decision Trees** - *C. S. Wallace and J. D. Patrick* - 1993 |

| **Coevolutionary learning: a case study** - *Hugues Juille and Jordan B. Pollack* - 1998 |

| **Co-Evolution in the Successful Learning of Backgammon Strategy** - *Jordan B. Pollack and Alan D. Blair* - 1998 |

| **A Cognitive Bias Approach to Feature Selection and Weighting for Case-Based Learners** - *Claire Cardie* - 2000 |

| **Cognitive Computation (Extended Abstract)** - *Leslie G. Valiant* - 1995 |

| **Co-learnability and FIN-identifiability of enumerable classes of total recursive functions** - *R. Freivalds, Dace Gobleja, Marek Karpinski and Carl H. Smith* - 1994 |

| **Colearning in Differential Games** - *John W. Sheppard* - 1998 |

| **Co-Learning of Recursive Languages from Positive Data** - *R. Freivalds and T. Zeugmann* - 1996 |

| **Co-learning of total recursive functions** - *R. Freivalds, M. Karpinski and C. H. Smith* - 1994 |

| **Collaborative filtering using weighted majority prediction algorithms** - *Atsuyoshi Nakamura and Naoki Abe* - 1998 |

| **Collaborative Learning for Recommender Systems** - *Wee Sun Lee* - 2001 |

| **A Column Generation Algorithm for Boosting** - *Kristin P. Bennett, Ayhan Demiriz and John Shawe-Taylor* - 2000 |

| **Combination of Estimation Algorithms and Grammatical Inference Techniques to Learn Stochastic Context-Free Grammars** - *Francisco Nevado, Joan-Andreu Sánchez and José -Miguel Bened\'ı* - 2000 |

| **Combining Cross-Validation and Search** - *C. J. C. H. Watkins* - May 1987 |

| **Combining Discrete Algorithmic and Probabilistic Approaches in Data Mining** - *Heikki Mannila* - 2001 |

| **Combining error-driven pruning and classification for partial parsing** - *Claire Cardie, Scott Mardis and David Pierce* - 1999 |

| **Combining labeled and unlabeled data with co-training** - *Avrim Blum and Tom Mitchell* - 1998 |

| **Combining multiple learning strategies for effective cross validation** - *Yiming Yang, Thomas Ault and Thomas Pierce* - 2000 |

| **Combining Multiple Perspectives** - *Bikramjit Banerjee, Sandip Debnath and Sandip Sen* - 2000 |

| **Combining nearest neighbor classifiers through multiple feature subsets** - *Stephen D. Bay* - 1998 |

| **Combining postulates of naturalness in inductive inference** - *Klaus P. Jantke and Hans-Rainer Beick* - 1981 |

| **Combining Reinforcement Learning with a Local Control Algorithm** - *Jette Randløv, Andrew G. Barto and Michael T. Rosenstein* - 2000 |

| **Combining statistical learning with a knowledge-based approach - a case study in intensive care monitoring** - *Katharina Morik, Peter Brockhausen and Thorsten Joachims* - 1999 |

| **Combining Symbolic and Neural Learning** - *Jude W. Shavlik* - 1994 |

| **Combining symbolic and neural learning, extended abstract** - *Jude Shavlik* - 1994 |

| **Combining top-down and bottom-up techniques in inductive logic programming** - *John M. Zelle, Raymond J. Mooney and Joshua B. Konvisser* - 1994 |

| **Comments on "Co-Evolution in the Successful Learning of Backgammon Strategy"** - *Gerald Tesauro* - 1998 |

| **Committee-based sampling for training probabilistic classifiers** - *Ido Dagan and Sean P. Engelson* - 1995 |

| **Compactness and Learning of Classes of Unions of Erasing Regular Pattern Languages** - *Jin Uemura and Masako Sato* - 2002 |

| **A comparative evaluation of voting and meta-learning on partitioned data** - *Philip K. Chan and Salvatore J. Stolfo* - 1995 |

| **A Comparative Study of Cost-Sensitive Boosting Algorithms** - *Kai Ming Ting* - 2000 |

| **A comparative study of inductive logic programming methods for software fault prediction** - *William W. Cohen and Prem Devanbu* - 1997 |

| **A Comparative Study of Two Algorithms for Automata Identification** - *Pedro Garcia, A. Cano and José Ruiz* - 2000 |

| **A comparative study on feature selection in text categorization** - *Yiming Yang and Jan O. Pedersen* - 1997 |

| **Comparing Complete and Partial Classification for Identifying Latently Dissatisfied Customers** - *Tom Brijs, Gilbert Swinnen, Koen Vanhoof and Geert Wets* - 2000 |

| **Comparing connectionist and symbolic learning methods** - *J. R. Quinlan* - 1994 |

| **Comparing methods for refining certainty-factor rule-bases** - *J. Jeffrey Mahoney and Raymond J. Mooney* - 1994 |

| **Comparing several linear-threshold learning algorithms on tasks involving superfluous attributes** - *Nick Littlestone* - 1995 |

| **Comparing the Bayes and Typicalness Frameworks** - *Thomas Melluish, Craig Saunders, Ilia Nouretdinov and Volodya Vovk* - 2001 |

| **Comparing the Minimum Description Length Principle and Boosting in the Automatic Analysis of Discourse** - *Tadashi Nomoto and Yuji Matsumoto* - 2000 |

| **Comparing the Power of Probabilistic Learning and Oracle Identification under Monotonicity Constraints** - *Léa Meyer* - 1998 |

| **Comparing Various Concepts of Function Prediction, Part 1** - *K. Podnieks* - 1974 |

| **Comparing Various Concepts of Function Prediction, Part 2** - *K. Podnieks* - 1975 |

| **A Comparison between Squared Error and Relative Entropy Metrics Using Several Optimization Algorithms** - *R. L. Watrous* - 1992 |

| **A comparison of ID3 and backpropogation for English text-to-speech mapping** - *Thomas G. Dietterich, Hermann Hild and Ghulum Bakiri* - 1995 |

| **A comparison of identification criteria for inductive inference of recursive real-valued functions** - *Eiju Hirowatari and Setsuo Arikawa* - 2001 |

| **A Comparison of Identification Criteria for Inductive Inference of Recursive Real-Valued Functions** - *Eiju Hirowatari and Setsuo Arikawa* - 1998 |

| **Comparison of Identification Criteria for Machine Inductive Inference** - *John Case and Carl H. Smith* - 1983 |

| **A comparison of inductive algorithms for selective and non-selective Bayesian classifiers** - *Moninder Singh and Gregory M. Provan* - 1995 |

| **A comparison of new and old algorithms for a mixture estimation problem** - *D. Helmbold, R. E. Schapire, Y. Singer and M. K. Warmuth* - 1997 |

| **A Comparison of New and Old Algorithms for a Mixture Estimation Problem** - *David P. Helmbold, Robert E. Schapire andYoram Singer and Manfred K. Warmuth* - 1997 |

| **A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms** - *Tjen-Sien Lim, Wei-Yin Loh and Yu-Shan Shih* - 2000 |

| **A Comparison of Ranking Methods for Classification Algorithm Selection** - *Pavel Brazdil and Carlos Soares* - 2000 |

| **A comparison of RBF and MLP networks for classification of biomagnetic fields** - *Martin F. Schlang, Klaus Abraham-Fuchs, Ralph Neuneier and Johann Uebler* - 1997 |

| **A comparitive study of the Kohonen self-organizing map and the elastic net** - *Yiu-fai Wong* - 1994 |

| **Competition-Based Induction of Decision Models from Examples** - *David Perry Greene and Stephen F. Smith* - 1993 |

| **A competitive approach to game learning** - *Christopher D. Rosin and Richard K. Belew* - 1996 |

| **Competitive learning by entropy minimization** - *Ryotaro Kamimura* - 1993 |

| **A Complete and Tight Average-Case Analysis of Learning Monomials** - *Rüdiger Reischuk and Thomas Zeugmann* - 1999 |

| **Complete Cross-Validatin for Nearest Neighbor Classifiers** - *Matthew Mullin and Rahul Sukthankar* - 2000 |

| **Complexity Approximation Principle and Rissanen's Approach to Real-Valued Parameters** - *Yuri Kalnishkan* - 2000 |

| **Complexity-based induction** - *Darrell Conklin and Ian H. Witten* - 1994 |

| **Complexity-based induction systems: comparisons and convergence theorems** - *R. J. Solomonoff* - 1978 |

| **Complexity Dimensions and Learnability** - *Shan-Hwei Nienhuys-Cheng and M. Polman* - 1993 |

| **Complexity in the Case Against Accuracy: When Building One Function-Free Horn Clause is as Hard as Any** - *Richard Nock* - 1999 |

| **Complexity Issues for Vacillatory Function Identification** - *J. Case, S. Jain and A. Sharma* - 1995 |

| **Complexity issues in learning by neural nets** - *J. Lin and J. S. Vitter* - 1989 |

| **Complexity of Automaton Identification from Given Data** - *E. M. Gold* - 1978 |

| **Complexity of computing Vapnik-Chervonenkis dimension and some generalized dimensions** - *Ayumi Shinohara* - 1995 |

| **Complexity of Connectionist Learning with Various Node Functions** - *J. S. Judd* - July 1987 |

| **The Complexity of Densest Region Detection** - *Shai Ben-David, Nadav Eiron and Hans Ulrich Simon* - 2000 |

| **The complexity of exactly learning algebraic concepts** - *V. Arvind and N. V. Vinodchandran* - 1996 |

| **The Complexity of Learning According to Two Models of a Drifting Environment** - *Philip M. Long* - 1999 |

| **The Complexity of Learning Concept Classes with Polynomial General Dimension** - *Johannes Köbler and Wolfgang Lindner* - 2002 |

| **Complexity of learning in artificial neural networks** - *Andreas Engel* - 2001 |

| **The Complexity of Learning Minor Closed Graph Classes** - *Carlos Domingo and John Shawe-Taylor* - 1995 |

| **Complexity of mechanized hypothesis formation** - *P. Pudlak and F. N. Springsteel* - 1979 |

| **Complexity of network training for classes of neural networks** - *Charles C. Pinter* - 1995 |

| **The Complexity of Theory Revision** - *Russell Greiner* - 1995 |

| **The complexity of universal text-learners** - *F. Stephan and S. A. Terwijn* - 1999 |

| **Complexity results on learning by neural networks** - *J-H. Lin and J. S. Vitter* - 1991 |

| **Composite Geometric Concepts and Polynomial Predictability** - *P. M. Long and M. K. Warmuth* - 1994 |

| **Composite Kernels for Hypertext Categorisation** - *Thorsten Joachims, Nello Cristianini and John Shawe-Taylor* - 2001 |

| **Comprehensible Interpretation of Relief's Estimates** - *Marko Robnik-ťikonja and Igor Kononenko* - 2001 |

| **Comprehension Grammars Generated from Machine Learning of Natural Languages** - *Patrick Suppes, Michael Böttner and Lin Liang* - 1995 |

| **Compression-based discretization of continuous attributes** - *Bernhard Pfahringer* - 1995 |

| **Computable Shell Decomposition Bounds** - *John Langford and David McAllester* - 2000 |

| **Computational Analysis of Plasma Waves and Particles in the Auroral Region Observed by Scientific Satellite** - *Yoshiya Kasahara, Ryotaro Niitsu and Toru Sato* - 2001 |

| **Computational Aspects of Parallel Attribute-Efficient Learning** - *Peter Damaschke* - 1998 |

| **Computational complexity of learning read-once formulas over different bases** - *L. Hellerstein and M. Karpinski* - 1991 |

| **The Computational Complexity of Machine Learning** - *M. Kearns* - May 1989 |

| **Computational Complexity of Problems on Probabilistic Grammars and Transducers** - *F. Casacuberta and Colin De La Higuera* - 2000 |

| **Computational Learning of Languages** - *Shyam Kapur* - 1991 |

| **Computational Learning Theory** - *M. Anthony and N. Biggs* - 1992 |

| **Computational Learning Theory, 4th European Conference, EuroCOLT '99, Nordkirchen, Germany, March 29-31, 1999, Proceedings** - *Paul Fischer and Hans-Ulrich Simon* - March 1999 |

| **Computational Learning Theory: New Models and Algorithms** - *R. H. Sloan* - 1989 |

| **Computational learning theory: survey and selected bibliography** - *D. Angluin* - 1992 |

| **Computational limitations on learning from examples** - *Leonard Pitt and Leslie G. Valiant* - 1988 |

| **Computational Limits on Team Identification of Languages** - *Sanjay Jain and Arun Sharma* - 1996 |

| **Computational Limits on Team Identification of Languages** - *S. Jain and A. Sharma* - 1993 |

| **The Computational Limits to the Cognitive Power of the Neuroidal Tabula Rasa** - *Jiri Wiedermann* - 1999 |

| **Computationally Efficient Transductive Machines** - *Craig Saunders, Alexander Gammerman and Volodya Vovk* - 2000 |

| **A Computational Model for Children's Language Acquisition Using Inductive Logic Programming** - *Ikuo Kobayashi, Koichi Furukawa, Tomonobu Ozaki and Mutsumi Imai* - 2001 |

| **A computational model of teaching** - *J. Jackson and A. Tomkins* - 1992 |

| **Computational Sample Complexity** - *Scott E. Decatur, Oded Goldreich and Dana Ron* - 1999 |

| **Computational Sample Complexity and Attribute-Efficient Learning** - *Rocco A. Servedio* - 2000 |

| **Computation of Substring Probabilities in Stochastic Grammars** - *Ana L. N. Fred* - 2000 |

| **Computer Output** - *D. Osherson* - 1985 |

| **Computers and thought** - *A. L. Samuel* - 1959 |

| **Computer Systems that Learn** - *S. Weiss and C. Kulikowski* - 1991 |

| **Computing Optimal Hypotheses Efficiently for Boosting** - *Shinichi Morishita* - 2001 |

| **Computing the maximum bichromatic discrepancy, with applications to computer graphics and machine learning** - *David P. Dobkin and Dimitrios Gunopulos* - 1996 |

| **Concept Decompositions for Large Sparse Text Data Using Clustering** - *Inderjit S. Dhillon and Dharmendra S. Modha* - 2001 |

| **Concept Formation During Interactive Theory Revision** - *Stefan Wrobel* - 1994 |

| **Concept Learning and Feature Selection Based on Square-Error Clustering** - *Boris Mirkin* - 1999 |

| **Concept learning with geometric hypotheses** - *David P. Dobkin and Dimitrios Gunopulos* - 1995 |

| **Concepts Learning with Fuzzy Clustering and Relevance Feedback** - *Bir Bhanu and Anlei Dong* - 2001 |

| **Conceptual Classifications Guided by a Concept Hierarchy** - *Yuhsuke Itoh and Makoto Haraguchi* - 2000 |

| **Conceptual Clustering, Categorization, and Polymorphy** - *Stephen José Hanson and Malcolm Bauer* - 1989 |

| **Concerning synthesis and prediction of functions** - *J. M. Barzdin, E. B. Kinber and K. M. Podnieks* - 1974 |

| **Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data** - *John Lafferty, Andrew McCallum and Fernando Pereira* - 2001 |

| **Confidence estimates of classification accuracy on new examples** - *John Shawe-Taylor* - 1997 |

| **Confirmation-Guided Discovery of First-Order Rules with Tertius** - *Peter A. Flach and Nicolas Lachiche* - 2001 |

| **Conflict Resolution as Discovery in Particle Physics** - *Sakir Kocabas* - 1991 |

| **Conjectural Equilibrium in Multiagent Learning** - *Michael P. Wellman and Junling Hu* - 1998 |

| **Connectionist Modeling and Control of Finite-State Environments** - *J. R. Bachrach* - February 1992 |

| **A connectionist model of the learning of personal pronouns in English** - *Thomas R. Shultz, David Buckingham and Yuriko Oshima-Takane* - 1994 |

| **Connectionist Nonparametric Regression: Multilayer Feedforward Networks can Learn Arbitrary Mappings** - *H. White* - 1990 |

| **Connections between Identifying Functionals, Standardizing Operations, and Computable Numberings** - *R. Freivalds, E. B. Kinber and R. Wiehagen* - 1984 |

| **CONSENSUS: A Statistical Learning Procedure in a Connectionist Network** - *G. J. Goetsch* - May 1986 |

| **Consensus Decision Trees: Using Consensus Hierarchical Clustering for Data Relabelling and Reduction** - *Branko Kavsek, Nada Lavrac and Anuska Ferligoj* - 2001 |

| **A conservation law for generalization performance** - *Cullen Shaffer* - 1994 |

| **Conservativeness and monotonicity for learning algorithms** - *E. Takimoto and A. Maruoka* - 1993 |

| **Consideration of risk in reinforcement learning** - *Matthias Heger* - 1994 |

| **The Consistency Dimension and Distribution-Dependendent Learning from Queries** - *José L. Balcázar, Jorge Castro, David Guijarro and Hans-Ulrich Simon* - 2002 |

| **The Consistency Dimension and Distribution-Dependent Learning from Queries** - *Jose L. Balcazar, Jorge Castro, David Guijarro and Hans-Ulrich Simon* - 1999 |

| **The Consistency of Greedy Algorithms for Classification** - *Shie Mannor, Ron Meir and Tong Zhang* - 2002 |

| **Consistency Queries in Information Extraction** - *Gunter Grieser, Klaus P. Jantke and Steffen Lange* - 2002 |

| **Consistent Inference of Probabilities for Reproducible Experiments** - *Y. Tikochinsky, N. Z. Tishby and R. D. Levine* - 1984 |

| **Consistent inference of probabilities in layered networks: predictions and generalizations** - *N. Tishby, E. Levin and S. Solla* - 1989 |

| **Consistent Polynomial Identification in the Limit** - *Werner Stein* - 1998 |

| **A Consistent Strategy for Boosting Algorithms** - *Gábor Lugosi and Nicolas Vayatis* - 2002 |

| **Constant depth circuits, Fourier transform, and learnability** - *N. Linial, Y. Mansour and N. Nisan* - 1989 |

| **A Constant-Factor Approximation Algorithm for the k-Median Problem (Extended Abstract)** - *Moses Charikar, Sudipto Guha, Eva Tardos and David B. Shmoys* - 1999 |

| **Constrained K-means Clustering with Background Knowledge** - *Kiri Wagstaff, Claire Cardie, Seth Rogers and Stefan Schroedl* - 2001 |

| **Constrained N-to-1 generalization** - *S. A. Vere* - 1981 |

| **A constraint-based induction algorithm in FOL** - *Michèle Sebag* - 1994 |

| **Constraint Classification: A New Approach to Multiclass Classification** - *Sariel Har-Peled, Dan Roth and Dav Zimak* - 2002 |

| **Constructing a Critical Casebase to Represent a Lattice-Based Relation** - *Ken Satoh* - 2001 |

| **Constructing Decision Trees in Noisy Domains** - *T. Niblett* - May 1987 |

| **Constructing Inductive Applications by Meta-Learning with Method Repositories** - *Hidenao Abe and Takahira Yamaguchi* - 2001 |

| **Constructing predicate mappings for goal-dependent abstraction** - *Yoshiaki Okubo and Makoto Haraguchi* - 1998 |

| **Constructing programs from example computations** - *A. W. Biermann and R. Krishnaswamy* - 1976 |

| **Constructing X-of-N Attributes for Decision Tree Learning** - *Zijian Zheng* - 2000 |

| **Construction of natural language sentence acceptors by a supervised learning technique** - *D. Coulon and D. Kayser* - 1979 |

| **Constructive Feature Learning and the Development of Visual Expertise** - *Justus H. Piater and Roderic A. Grupen* - 2000 |

| **Constructive Induction for Recursive Programs** - *Chowdhury Rahman Mofizur and Masayuki Numao* - 1994 |

| **Constructive induction using fragmentary knowledge** - *Steve Donoho and Larry Rendell* - 1996 |

| **Constructive Learning of Context-Free Languages with a Subpansive Tree** - *Noriko Sugimoto, Takashi Toyoshima, Shinichi Shimozono and Kouichi Hirata* - 2000 |

| **Constructive learning of translations based on dictionaries** - *Noriko Sugimoto, Kouichi Hirata and Hiroki Ishizaka* - 1996 |

| **Content-Based Similarity Assessment in Multi-segmented Medical Image Data Bases** - *George Potamias* - 2001 |

| **Continuous-Action Q-Learning** - *José del R. Millán, Daniele Posenato and Eric Dedieu* - 2002 |

| **Continuous Drifting Games** - *Yoav Freund and Manfred Opper* - 2000 |

| **Continuous-Time Hierarchial Reinforcement Learning** - *Mohammad Ghavamzadeh and Sridhar Mahadevan* - 2001 |

| **Contrastive learning with graded random networks** - *Javier R. Movellan and James L. McClelland* - 1994 |

| **Controlled Redundancy in Incremental Rule Learning** - *L. Torgo* - 1993 |

| **Control structures in hypothesis spaces: the influence on learning** - *John Case, Sanjay Jain and Mandayam Suraj* - 2002 |

| **Control structures in hypothesis spaces: the influence on learning** - *John Case, Sanjay Jain and Mandayam Suraj* - 1997 |

| **Convergence analysis of temporal-difference learning algorithms with linear function approximation** - *Vladislav Tadić* - 1999 |

| **Convergence and Error Bounds for Universal Prediction of Nonbinary Sequences** - *Marcus Hutter* - 2001 |

| **Convergence of a Generalized SMO Algorithm for SVM Classifier Design** - *S. S. Keerthi and E. G. Gilbert* - 2002 |

| **Convergence of Gradient Dynamics with a Variable Learning Rate** - *Michael Bowling and Manuela Veloso* - 2001 |

| **Convergence of Stochastic Processes** - *D. Pollard* - 1984 |

| **The Convergence of TD(***lambda*) for General *lambda* - *Peter Dayan* - 1992 |

| **Convergence Problems of General-Sum Multiagent Reinforcement Learning** - *Michael Bowling* - 2000 |

| **Convergence Rate of Minimization Learning for Neural Networks** - *M. H. Mohamed, T. Minamoto and K. Niijima* - 1998 |

| **Convergence Rates of the Voting Gibbs Classifier, with Application to Bayesian Feature Selection** - *Andrew Y. Ng and Michael I. Jordan* - 2001 |

| **Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms** - *Satinder Singh, Tommi Jaakkola, Michael L. Littman and Csaba Szepesvári* - 2000 |

| **Convergence results for the EM approach to Mixtures of Experts Architectures** - *M. I. Jordan and L. Xu* - 1995 |

| **Convergence Results in the Hopfield Model** - *J. Kómlos and R. Paturi* - September 1987 |

| **Convergence to Nearly Minimal Size Grammars by Vacillating Learning Machines** - *J. Case, S. Jain and A. Sharma* - 1990 |

| **Convergence to nearly minimal size grammars by vacillating learning machines** - *S. Jain, A. Sharma and J. Case* - 1989 |

| **A convergent reinforcement learning algorithm in the continuous case: the finite-element reinforcement learning** - *Rémi Munos* - 1996 |

| **CONVINCE: A Conversational Inference Consolidation Engine** - *J. H. Kim* - 1983 |

| **Coping with uncertainty in map learning** - *Kenneth Basye, Thomas Dean and Jeffrey Scott Vitter* - 1997 |

| **The correct definition of finite elasticity: corrigendum to Identification of unions** - *T. Motoki, T. Shinohara and K. Wright* - 1991 |

| **Correcting noisy data** - *Choh Man Teng* - 1999 |

| **Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning** - *Mark A. Hall* - 2000 |

| **Corrigendum for: Learnability of description logics** - *William W. Cohen and Haym Hirsh* - 1995 |

| **Corrigendum to Types of noise in data for concept learning** - *R. H. Sloan* - 1992 |

| **Cost-sensitive feature reduction applied to a hybrid genetic algorithm** - *Nada Lavrač, Dragan Gamberger and Peter Turney* - 1996 |

| **Cost-Sensitive Learning of Classification Knowledge and Its Applications in Robotics** - *Ming Tan* - 1993 |

| **Costs of general purpose learning** - *John Case, Keh-Jiann Chen and Sanjay Jain* - 2001 |

| **Costs of General Purpose Learning** - *John Case, Keh-Jiann Chen and Sanjay Jain* - 1999 |

| **Counting Extensional Differences in BC-Learning** - *Frank Stephan and Sebastiaan A. Terwijn* - 2000 |

| **Coupled Clustering: a Method for Detecting Structural Correspondence** - *Zvika Marx, Ido Dagan and Joachim Buhmann* - 2001 |

| **Covering cubes by random half cubes, with applications to binary neural networks** - *Jeong Han Kim and James R. Roche* - 1998 |

| **Covering numbers for support vector machines** - *Ying Guo, Peter L. Bartlett, John Shawe-Taylor and Robert C. Williamson* - 1999 |

| **Crafting Papers on Machine Learning** - *Pat Langley* - 2000 |

| **Creating Advice-Taking Reinforcement Learners** - *Richard Maclin and Jude W. Shavlik* - 1996 |

| **Creating a Memory of Casual Relationships** - *William W. Cohen* - 1993 |

| **Credit Assignment in Rule Discovery Systems Based on Genetic Algorithms** - *John J. Grefenstette* - 1988 |

| **Criteria for Polynomial-Time (Conceptual) Clustering** - *Leonard Pitt and Robert E. Reinke* - 1988 |

| **Criteria for specifying machine complexity in learning** - *Changfeng Wang and Santosh S. Venkatesh* - 1995 |

| **Criteria of Language Learning** - *Daniel N. Osherson and Scott Weinstein* - 1982 |

| **A Critical Look at Experimental Evaluations of EBL** - *Alberto Segre, Charles Elkan and Alexander Russell* - 1991 |

| **Critical Points for Least-Squares Problems Involving Certain Analytic Functions, with Applications to Sigmoidal Nets** - *Eduardo D. Sontag* - 1995 |

| **A critical survey of rule learning programs** - *A. Bundy and B. Silver* - 1981 |

| **A Critique of the Valiant Model** - *W. Buntine* - 1989 |

| **Cross-validation and modal theories** - *Timothy L. Bailey and Charles Elkan* - 1995 |

| **Cross-validation for binary classification by real-valued functions: theoretical analysis** - *Martin Anthony and Sean B. Holden* - 1998 |

| **Cryptographic hardness of distribution-specific learning** - *M. Kharitonov* - 1993 |

| **Cryptographic limitations on learning Boolean formulae and finite automata** - *Michael Kearns and Leslie Valiant* - 1994 |

| **Cryptographic limitations on learning Boolean formulae and finite automata** - *M. Kearns and L. G. Valiant* - 1989 |

| **Cryptographic Limitations on Learning One-Clause Logic Programs** - *William Cohen* - 1993 |

| **Cryptographic limitations on parallelizing membership and equivalence queries with applications to random-self-reductions** - *Marc Fischlin* - 2001 |

| **Cryptographic Limitations on Parallelizing Membership and Equivalence Queries with Applications to Random Self-Reductions** - *Marc Fischlin* - 1998 |

| **Cryptographic lower bounds for learnability of Boolean functions on the uniform distribution** - *Michael Kharitonov* - 1995 |

| **Cryptographic lower bounds on learnability of Boolean functions on the uniform distribution** - *M. Kharitonov* - 1992 |

| **CSM: A Computational Model of Cumulative Learning** - *Hayong Harry Zhou* - 1990 |