| **T-.1em.7exL-.31emP-.1em.4exS - a Term Rewriting Laboratory (not only) for Experiments in Automatic Program Synthesis** - *Gunter Grieser* - 1995 |

| **Tailoring Representations to Different Requirements** - *Katharina Morik* - 1999 |

| **A Tale of Two Classifier Systems** - *George G. Robertson and Rick L. Riolo* - 1988 |

| **Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks** - *R. A. Jacobs, M. A. Jordan and A. G. Barto* - March 1990 |

| **Task-Structures, Knowledge Acquisition and Learning** - *B. Chandrasekaran* - 1989 |

| **TD(***lambda*) converges with probability 1 - *Peter Dayan and Terrence J. Sejnowski* - 1994 |

| **TD models: modeling the world at a mixture of time scales** - *Richard S. Sutton* - 1995 |

| **Teachability in Computational Learning** - *A. Shinohara and S. Miyano* - 1991 |

| **Teachers, Learners and Black Boxes** - *Dana Angluin and Mārtiņš Krikis* - 1997 |

| **Teaching an agent to test students** - *Gheorghe Tecuci and Harry Keeling* - 1998 |

| **Teaching a smarter learner** - *Sally A. Goldman and H. David Mathias* - 1996 |

| **Team learning as a game** - *Andris Ambainis, Kalvis Aps\=ıtis, Rīsiņš Freivalds, William Gasarch and Carl H. Smith* - 1997 |

| **Team Learning of Computable Languages** - *Sanjay Jain and Arun Sharma* - 2000 |

| **Team Learning of Recursive Languages** - *Sanjay Jain and Arun Sharma* - 1996 |

| **Technical and Scientific Issues of KDD (or: Is KDD a Science?)** - *Yves Kodratoff* - 1995 |

| **Technical Note: Bias and the Quantification of Stability** - *Peter Turney* - 1995 |

| **Technical note: incremental multi-step Q-learning** - *Jing Peng and Ronald J. Williams* - 1996 |

| **Technical Note: Naive Bayes for Regression** - *Eibe Frank, Leonard Trigg, Geoffrey Holmes and Ian H. Witten* - 2000 |

| **Technical Note Q-Learning** - *Christopher J. C. H. Watkins and Peter Dayan* - 1992 |

| **Technical Note: Some Properties of Splitting Criteria** - *Leo Breiman* - 1996 |

| **Technical note: statistical methods for analyzing speedup learning experiments** - *Oren Etzioni and Ruth Etzioni* - 1994 |

| **Technical Update: Least-Squares Temporal Difference Learning** - *Justin A. Boyan* - 2002 |

| **A technique for upper bounding the spectral norm with applications to learning** - *M. Bellare* - 1992 |

| **Techniques using LISP for automatically discovering interesting relations in data** - *E. Fredkin* - 1964 |

| **Technology of Text Mining** - *Ari Visa* - 2001 |

| **Tempral Abstractions and Case-Based Reasoning for Medical Course Data: Two Prognostic Applications** - *Rainer Schmidt and Lothar Gierl* - 2001 |

| **Tensor Manipulation Networks: Connectionist and Symbolic Approaches to Comprehension, Learning, and Planning** - *C. P. Dolan* - June 1989 |

| **Testing and inductive inference: abstract approaches** - *J. Cherniavsky and R. Statman* - 1987 |

| **Testing As A Dual To Learning** - *K. Romanik* - June 1991 |

| **Testing finite state machines** - *M. Yannakakis and D. Lee* - 1991 |

| **Testing of Clustering** - *Noga Alon, Seannie Dar, Michal Parnas and Dana Ron* - 2000 |

| **Testing Problems with Sublearning Sample Complexity** - *Michael Kearns and Dana Ron* - December 2000 |

| **Testing problems with sub-learning sample complexity** - *Michael Kearns and Dana Ron* - 1998 |

| **Text categorization and relational learning** - *William W. Cohen* - 1995 |

| **Text Categorization Using Transductive Boosting** - *Hirotoshi Taira and Masahiko Haruno* - 2001 |

| **Text Categorization with Support Vector Machines. How to Represent Texts in Input Space?** - *Edda Leopold and Jörg Kindermann* - 2002 |

| **Text Classification from Labeled and Unlabeled Documents using EM** - *Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun and Tom Mitchell* - 2000 |

| **Theoretical analysis of a class of randomized regularization methods** - *Tong Zhang* - 1999 |

| **A Theoretical Analysis of Query Selection for Collaborative Filtering** - *Wee Sun Lee and Philip M. Long* - 2001 |

| **Theoretical analysis of the nearest neighbor classifier in noisy domains** - *Seishi Okamoto and Nobuhiro Yugami* - 1996 |

| **A Theoretical and Empirical Study of a Noise-Tolerant Algorithm to Learn Geometric Patterns** - *Sally A. Goldman and Stephen D. Scott* - 1999 |

| **Theoretical and Experimental Evaluation of the Subspace Information Criterion** - *Masashi Sugiyama and Hidemitsu Ogawa* - 2002 |

| **Theoretical Views of Boosting** - *Robert E. Schapire* - 1999 |

| **Theoretical Views of Boosting and Applications** - *Robert E. Schapire* - 1999 |

| **Theorie der Zeichenerkennung** - *V. N. Vapnik* - 1979 |

| **Theory and applications of agnostic PAC-learning with small decision trees** - *Peter Auer, Robert C. Holte and Wolfgang Maass* - 1995 |

| **A Theory and Methodology of Inductive Inference** - *R. S. Michalski* - 1986 |

| **Theory Change via View Application in Instructionless Learning** - *Jeff Shrager* - 1987 |

| **A Theory for Memory-Based Learning** - *Jyh-Han Lin and Jeffrey Scott Vitter* - 1994 |

| **Theory-guided empirical speedup learning of goal decomposition rules** - *Chandra Reddy, Prasad Tadepalli and Silvana Roncagliolo* - 1996 |

| **Theory-guided induction of logic programs by inference of regular languages** - *Henrik Boström* - 1996 |

| **A Theory of Historical Discovery: The Construction of Componential Models** - *Jan M. Zytkow and Herbert A. Simon* - 1986 |

| **A Theory of Hypothesis Finding in Clausal Logic** - *Akihiro Yamamoto and Bertram Fronhöfer* - 2001 |

| **Theory of Judgments and Derivations** - *Masahiko Sato* - 2001 |

| **A Theory of Learning Classification Rules** - *W. L. Buntine* - 1990 |

| **A theory of learning simple concepts under simple distributions and average case complexity for the universal distribution** - *M. Li and P. M. B. Vitanyi* - 1989 |

| **Theory of Learning: What's Hard and What's Easy to Learn** - *R. L. Rivest* - 1991 |

| **A Theory of Networks for Approximation and Learning** - *T. Poggio and F. Girosi* - September 1990 |

| **A Theory of the Learnable** - *L. G. Valiant* - November 1984 |

| **A Theory-Refinement Approach to Information Extraction** - *Tina Eliassi-Rad and Jude Shavlik* - 2001 |

| **Theory refinement for Bayesian networks with hidden variables** - *Sowmya Ramachandran and Raymond J. Mooney* - 1998 |

| **Theory Revision with Queries: DNF Formulas** - *Judy Goldsmith, Robert H. Sloan and György Turán* - 2002 |

| **Therapy Plan Generation as Program Synthesis** - *Oksana Arnold and Klaus P. Jantke* - 1994 |

| **A Thesis in Inductive Inference** - *R. Wiehagen* - 1990 |

| **Thoughts on Hypothesis Boosting** - *M. Kearns* - December 1988 |

| **Three Decades of Team Learning** - *Carl H. Smith* - 1994 |

| **Thue Systems and DNA - A Learning Algorithm for a Subclass** - *Rani Siromoney, D. G. Thomas, K. G. Subramanian and V. R. Dare* - 1993 |

| **Tight worst-case loss bounds for predicting with expert advice** - *David Haussler, Jyrki Kivinen and Manfred K. Warmuth* - 1995 |

| **To discount or not to discount in reinforcement learning: a case study comparing R learning and Q learning** - *Sridhar Mahadevan* - 1994 |

| **Too Much Information Can be too Much for Efficient Learning** - *R. Wiehagen and T. Zeugmann* - 1992 |

| **Top-Down Decision Tree Boosting and Its Applications** - *Eiji Takimoto and Akira Maruoka* - 2001 |

| **Top-down induction of clustering trees** - *Hendrik Blockeel, Luc De Raedt and Jan Ramon* - 1998 |

| **Topics in Statistical Pattern Recognition** - *T. M. Cover and T. J. Wagner* - 1976 |

| **Topological Considerations in Composing Teams of Learning Machines** - *Kalvis Aps\=ıtis* - 1995 |

| **Total complexity and the inference of best programs** - *J. A. Feldman and P. Shields* - 1977 |

| **Toward a Computational Theory of Data Acquisition and Truthing** - *David G. Stork* - 2001 |

| **Toward a Mathematical Theory of Inductive Inference** - *Leonore Blum and Manuel Blum* - June 1975 |

| **Toward a Model of Intelligence as an Economy of Agents** - *Eric B. Baum* - 1999 |

| **Toward a model of mind as a laissez-faire economy of idiots** - *Eric B. Baum* - 1996 |

| **Toward a Modern Theory of Adaptive Networks: Expectation and Prediction** - *R. S. Sutton and A. G. Barto* - 1981 |

| **Toward an Explanatory Similarity Measure for Nearest-Neighbor Classification** - *Mathieu Latourrette* - 2000 |

| **Toward an ideal trainer** - *Susan L. Epstein* - 1994 |

| **Toward a Unified Science of Machine Learning** - *P. Langley* - 1989 |

| **Toward efficient agnostic learning** - *Michael J. Kearns, Robert E. Schapire and Linda M. Sellie* - 1994 |

| **Toward Optimal Active Learning through Sampling Estimation of Error Reduction** - *Nicholas Roy and Andrew McCallum* - 2001 |

| **Toward optimal feature selection** - *Daphne Koller and Mehran Sahami* - 1996 |

| **Towards a better understanding of memory-based reasoning systems** - *John Rachlin, Simon Kasif, Steven Salzberg and David W. Aha* - 1994 |

| **Towards a DNA sequencing theory (learning a string)** - *M. Li* - 1990 |

| **Towards a mathematical theory of machine discovery from facts** - *Yasuhito Mukouchi and Setsuo Arikawa* - 1995 |

| **Towards a more comprehensive theory of learning in computers** - *P. M. Long* - 1992 |

| **Towards an Algorithmic Statistics** - *Peter Gács, John Tromp and Paul Vitányi* - 2000 |

| **Towards a theory of inductive inference** - *J. M. Barzdin and K. M. Podnieks* - 1973 |

| **Towards a Universal Theory of Artificial Intelligence Based on Algorithmic Probability and Sequential Decisions** - *Marcus Hutter* - 2001 |

| **Towards Chunking as a General Learning Mechanism** - *J. Laird, P. Rosenbloom and A. Newell* - August 1984 |

| **Towards efficient inductive synthesis from input/output examples** - *Jānis Barzdinš* - 1994 |

| **Towards efficient inductive synthesis of expressions from input/output examples** - *Jānis Bārzdiņs, Guntis Bārzdiņs, Kalvis Aps\=ıtis and Uğis Sarkans* - 1993 |

| **Towards efficient inductive synthesis: Rapid construction of local regularities** - *J. Barzdins and G. Barzdins* - 1993 |

| **Towards learning by abstraction** - *S. Sakurai and M. Haraguchi* - 1992 |

| **Towards Realistic Theories of Learning** - *N. Abe* - 1997 |

| **Towards Reduction Arguments for FINite Learning** - *Robert Daley and Bala Kalyanasundaram* - 1995 |

| **Towards Representation Independence in PAC-learning** - *M. K. Warmuth* - October 1989 |

| **Towards robust model selection using estimation and approximation error bounds** - *Joel Ratsaby, Ronny Meir and Vitaly Maiorov* - 1996 |

| **Towards Self-Exploring Discriminating Features** - *Ying Wu and Thomas S. Huang* - 2001 |

| **Towards the Development of an Analysis of Learning Algorithms** - *R. P. Daley* - 1986 |

| **Towards the Integration of Inductive and Nonmonotonic Logic Programming** - *Chiaki Sakama* - 2001 |

| **Towards the Validation of Inductive Learning Systems** - *Gunter Grieser, Klaus P. Jantke and Steffen Lange* - 1998 |

| **Toward the Discovery of First Principle Based Scientific Law Equations** - *Takashi Washio and Hiroshi Motoda* - 2001 |

| **TPOT-RL Applied to Network Routing** - *Peter Stone* - 2000 |

| **Tracking a Small Set of Experts by Mixing Past Posteriors** - *Olivier Bousquet and Manfred K. Warmuth* - 2001 |

| **Tracking drifting concepts by minimizing disagreements** - *David P. Helmbold and Philip M. Long* - 1994 |

| **Tracking drifting concepts using random examples** - *D. P. Helmbold and P. M. Long* - 1991 |

| **Tracking Linear-Threshold Concepts with Winnow** - *Chris Mesterharm* - 2002 |

| **Tracking the Best Disjunction** - *Peter Auer and Manfred K. Warmuth* - 1998 |

| **Tracking the Best Expert** - *Mark Herbster and Manfred Warmuth* - 1998 |

| **Tracking the best regressor** - *Mark Herbster and Manfred K. Warmuth* - 1998 |

| **Tractable average-case analysis of naive Bayesian classifiers** - *Pat Langley and Stephanie Sage* - 1999 |

| **Trade-Off Among Parameters Affecting Inductive Inference** - *R. Freivalds, C. H. Smith and M. Velauthapillai* - 1989 |

| **Tradeoffs in Machine Inductive Inference** - *K. Chen* - 1981 |

| **Tradeoffs in the inductive inference of nearly minimal size programs** - *K. J. Chen* - 1982 |

| **Trading accuracy for simplicity in decision trees** - *Marko Bohanec and Ivan Bratko* - 1994 |

| **Trading monotonicity demands versus efficiency** - *S. Lange and T. Zeugmann* - 1995 |

| **Trading Monotonicity Demands versus Mind Changes** - *Steffen Lange and Thomas Zeugmann* - 1995 |

| **Training a 3-node neural net is NP-Complete** - *A. Blum and R. L. Rivest* - 1989 |

| **A training algorithm for optimal margin classifiers** - *B. E. Boser, I. M. Guyon and V. N. Vapnik* - 1992 |

| **Training Digraphs** - *Hsieh-Chang Tu and Carl H. Smith* - 1994 |

| **Training Invariant Support Vector Machines** - *Dennis Decoste and Bernhard Schölkopf* - 2002 |

| **Training sequences** - *Dana Angluin, William I. Gasarch and Carl H. Smith* - 1989 |

| **Transducer-Learning Experiments on Language Understanding** - *David Picó and Enrique Vidal* - 1998 |

| **Transductive inference for text classification using support vector machines** - *Thorsten Joachims* - 1999 |

| **Transfer of Learning by Composing Solutions of Elemental Sequential Tasks** - *Satinder Pal Singh* - 1992 |

| **Transformation of probabilistic learning strategies into deterministic learning strategies** - *R. Daley* - 1988 |

| **Transformations that preserve learnability** - *Andris Ambainis and Rīsiņs Freivalds* - 1996 |

| **Trees and learning** - *Wolfgang Merkle and Frank Stephan* - 1996 |

| **Trial and Error: a New Approach to Space-bounded Learning** - *F. Ameur, P. Fischer, K. U. Höffgen and F. Meyer auf der Heide* - 1994 |

| **Two Methods for Improving Inductive Logic Programming Systems** - *Irene Stahl, Birgit Tausend and Rüdiger Wirth* - 1993 |

| **Two New Frameworks for Learning** - *B. K. Natarajan and P. Tadepalli* - June 1988 |

| **Two Theorems on the Limiting Synthesis of Functions** - *J. M. Barzdin* - 1974 |

| **Two Variations of Inductive Inference of Languages from Positive Data** - *Takashi Tabe and Thomas Zeugmann* - 1995 |

| **A typed ***lambda*-calculus for proving-by-example and bottom-up generalization procedure - *Masami Hagiya* - 1995 |

| **Typed pattern languages and their learnability** - *Takeshi Koshiba* - 1995 |

| **Types of monotonic language learning and their characterization** - *S. Lange and T. Zeugmann* - 1992 |

| **Types of noise in data for concept learning** - *R. Sloan* - 1988 |

| **Types of queries for concept learning** - *D. Angluin* - June 1986 |