| **Background knowledge in GA-based concept learning** - *Jukka Hekanaho* - 1996 |

| **Backpropagation Can Give Rise to Spurious Local Minima Even for Networks without Hidden Layers** - *E. D. Sontag and H. J. Sussmann* - February 1989 |

| **Back Propagation Fails to Separate Where Perceptrons Succeed** - *M. L. Brady, R. Raghavan and J. Slawny* - May 1989 |

| **Backpropagation in Decision Trees for Regression** - *Victor Medina-Chico, Alberto Suárez and James F. Lutsko* - 2001 |

| **Back Propagation Separates Where Perceptrons Do** - *E. D. Sontag and H. J. Sussmann* - 1991 |

| **Balanced Cooperative Modeling** - *Katharina Morik* - 1993 |

| **Barrier Boosting** - *G. Rätsch, M. Warmuth, S. Mika, T. Onoda, S. Lemm and K. R. Müller* - 2000 |

| **Bayes and Pseudo-Bayes Estimates of Conditional Probabilities and Their Reliability** - *James Cussens* - 1993 |

| **Bayes Decision Methods** - *J. Pearl* - June 1985 |

| **Bayes decisions in a neural network-PAC setting** - *Svetlana Anulova, Jorge R. Cuellar, Klaus-U. Höffgen and Hans-U. Simon* - 1994 |

| **A Bayesian analysis of algorithms for learning finite functions** - *James Cussens* - 1995 |

| **Bayesian approaches to failure prediction for disk drives** - *Greg Hamerly and Charles Elkan* - 2001 |

| **A Bayesian approach to model learning in non-Markovian environments** - *N. Suematsu, A. Hayashi and S. Li* - 1997 |

| **A Bayesian Approach to Temporal Data Clustering using Hidden Markov Models** - *Cen Li and Gautam Biswas* - 2000 |

| **Bayesian Averaging of Classifiers and the Overfitting Problem** - *Pedro Domingos* - 2000 |

| **Bayesian classifiers are large margin hyperplanes in a Hilbert space** - *Nello Cristianini, John Shawe-Taylor and Peter Sykacek* - 1998 |

| **Bayesian Clustering by Dynamics** - *Marco Ramoni, Paola Sebastiani and Paul Cohen* - 2002 |

| **A Bayesian Framework for Reinforcement Learning** - *Malcolm Strens* - 2000 |

| **A Bayesian framework to integrate symbolic and neural learning** - *Irina Tchoumatchenko and Jean-Gabriel Ganascia* - 1994 |

| **Bayesian inductive logic programming** - *S. Muggleton* - 1994 |

| **A Bayesian/information theoretic model of bias learning** - *Jonathan Baxter* - 1996 |

| **A Bayesian/information theoretic model of learning to learn via multiple task sampling** - *Jonathan Baxter* - 1997 |

| **Bayesian Landmark Learning for Mobile Robot Localization** - *Sebastian Thrun* - 1998 |

| **A Bayesian Method for the Induction of Probabilistic Networks from Data** - *Gregory F. Cooper and Edward Herskovits* - 1992 |

| **Bayesian Methods for Adaptive Models** - *D. MacKay* - 1992 |

| **Bayesian Methods for Support Vector Machines: Evidence and Predictive Class Probabilities** - *Peter Sollich* - 2002 |

| **Bayesian network classification with continuous attributes: getting the best of both discretization and parametric fitting** - *Nir Friedman, Moises Goldszmidt and Thomas J. Lee* - 1998 |

| **Bayesian network classifiers** - *Nir Friedman, Dan Geiger and Moises Goldszmidt* - 1997 |

| **Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning** - *J. Pearl* - June 1985 |

| **Bayesian Training of Backpropagation Networks by the Hybrid Monte Carlo Method** - *R. M. Neal* - April 1992 |

| **Bayesian Treed Models** - *Hugh A. Chipman, Edward I. George and Robert E. McCulloch* - 2002 |

| **Beating the hold-out: bounds for k-fold and progressive cross-validation** - *Avrim Blum, Adam Kalai and John Langford* - 1999 |

| **Behavioral Cloning of Student Pilots with Modular Neural Networks** - *Charles W. Anderson, Bruce A. Draper and David A. Peterson* - 2000 |

| **Behavior of sequential predictors of binary sequences** - *T. Cover* - 1965 |

| **Being taught can be faster than asking questions** - *Ronald L. Rivest and Yiqun L. Yin* - 1995 |

| **Belief revision in the service of scientific discovery** - *Eric Martin and Daniel N. Osherson* - 1998 |

| **BELLMAN STRIKES AGAIN! The growth rate of sample complexity with dimension for the nearest neighbor classifier** - *S. S. Venkatesh, R. R. Snapp and D. Psaltis* - 1992 |

| **Über eine Eigenschaft Limes berechenbarer Funktionale** - *J. M. Barzdin* - 1974 |

| **Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien.** - *G. Schäfer-Richter* - 1984 |

| **BEXA: A Covering Algorithm for Learning Propositional Concept Descriptions** - *Hendrik Theron and Ian Cloete* - 1996 |

| **Beyond independence: conditions for the optimality of the simple Bayesian classifier** - *Pedro Domingos and Michael Pazzani* - 1996 |

| **Beyond Occam's Razor: Process-Oriented Evaluation** - *Pedro Domingos* - 2000 |

| **Bias Correction in Classification Tree Construction** - *Alin Dobra and Johannes Gehrke* - 2001 |

| **Bias in Information-Based Measures in Decision Tree Induction** - *Allan P. White and Wei Zhong Liu* - 1994 |

| **Bias plus variance decomposition for zero-one loss functions** - *Ron Kohavi and David H. Wolpert* - 1996 |

| **Bias-Variance Error Bounds for Temporal Difference Updates** - *Michael Kearns and Satinder Singh* - 2000 |

| **Bias, Version Spaces, and Valiant's Learning Framework** - *D. Haussler* - June 1987 |

| **Binary decision trees and an 'average-case' model for concept learning: implications for feature construction and the study of bias** - *Raj Seshu* - 1994 |

| **The Binary Exponentiated Gradient Algorithm for Learning Linear Functions** - *Tom Bylander* - 1997 |

| **Birds can fly...** - *Jochen Nessel* - 1998 |

| **Bivariate Scientific Function Finding in a Sampled, Real-Data Testbed** - *Cullen Schaffer* - 1993 |

| **Boltzmann Machines: Constraint Satisfaction Networks that Learn** - *G. E. Hinton, T. J. Sejnowski and D. H. Ackley* - May 1984 |

| **Book Review** - *Roland J. Zito-Wolf* - 1991 |

| **Book Review: C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993.** - *Steven L. Salzberg* - 1994 |

| **Book review: inductive logic programming: techniques and applications** - *Michael Pazzani* - 1996 |

| **Book Review: Machine Learning: A Theoretical Approach** - *Lisa Hellerstein* - 1993 |

| **Book Review: Neural Network Perception for Mobile Robot Guidance by Dean A. Pomerleau. Kluwer Academic Publishers, 1993.** - *Geoffrey Towell* - 1995 |

| **A Boolean Complete Neural Model of Adaptive Behavior** - *S. Hampson and D. Kibler* - 1983 |

| **Boolean Feature Discovery in Empirical Learning** - *Giulia Pagallo and David Haussler* - 1990 |

| **Boolean Formulas are Hard to Learn for Most Gate Bases** - *Victor Dalmau* - 1999 |

| **BoosTexter: A Boosting-based System for Text Categorization** - *Robert E. Schapire and Yoram Singer* - 2000 |

| **Boosting and other machine learning algorithms** - *Harris Drucker, Corinna Cortes, L. D. Jackel, Yann LeCun and Vladimir Vapnik* - 1994 |

| **"Boosting" a Positive-Data-Only Learner** - *Andrew Mitchell* - 2000 |

| **Boosting Applied toe Word Sense Disambiguation** - *Gerard Escudero, Lluís Màrquez and German Rigau* - 2000 |

| **A Boosting Approach to Topic Spotting on Subdialogues** - *Kary Myers, Michael Kearns, Satinder Singh and Marilyn A. Walker* - 2000 |

| **Boosting as entropy projection** - *Jyrki Kivinen and Manfred K. Warmuth* - 1999 |

| **Boosting a strong learner: evidence against the minimum margin** - *Michael Harries* - 1999 |

| **Boosting a Weak Learning Algorithm by Majority** - *Y. Freund* - September 1995 |

| **Boosting first-order learning** - *J. R. Quinlan* - 1996 |

| **Boosting Methods for Regression** - *Nigel Duffy and David Helmbold* - 2002 |

| **Boosting Neighborhood-Based Classifiers** - *Marc Sebban, Richard Nock and Stéphane Lallich* - 2001 |

| **Boosting Noisy Data** - *Abba Krieger, Chuan Long and Abraham Wyner* - 2001 |

| **Boosting the margin: a new explanation for the effectiveness of voting methods** - *Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee* - 1997 |

| **Boosting Using Branching Programs** - *Yishay Mansour and David McAllester* - 2000 |

| **Boosting with Confidence Information** - *Craig W. Codrington* - 2001 |

| **Bootstrap Methods for the Cost-Sensitive Evaluation of Classifiers** - *Dragos D. Margineantu and Thomas G. Dietterich* - 2000 |

| **Bootstrapping Syntax and Recursion using Alignment-Based Learning** - *Menno van Zaanen* - 2000 |

| **Bottom-Up Induction of Feature Terms** - *Eva Armengol and Enric Plaza* - 2000 |

| **Bounded degree graph inference from walks** - *Vijay Raghavan* - 1994 |

| **The bounded injury priority method and the learnability of unions of rectangles** - *Z. Chen and S. Homer* - 1996 |

| **Bounding sample size with the Vapnik-Chervonenkis dimension** - *J. Shawe-Taylor, M. Anthony and R. L. Biggs* - 1989 |

| **Bounding the Vapnik-Chervonenkis dimension of concept classes parametrized by real numbers** - *Paul W. Goldberg and Mark R. Jerrum* - 1995 |

| **Bounding VC-dimension for neural networks: progress and prospects** - *Marek Karpinski and Angus Macintyre* - 1995 |

| **Bounds for Predictive Errors in the Statistical Mechanics of in Supervised Learning** - *Manfred Opper and David Haussler* - 1995 |

| **Bounds for the Computational Power and Learning Complexity of Analog Neural Nets** - *Wolfgang Maass* - 1997 |

| **Bounds for the Minimum Disagreement Problem with Applications to Learning Theory** - *Nader H. Bshouty and Lynn Burroughs* - 2002 |

| **Bounds on approximate steepest descent for likelihood maximization in exponential families** - *N. Cesa-Bianchi, A. Krogh and M. K. Warmuth* - July 1994 |

| **Bounds on Sample Size for Policy Evaluation in Markov Environments** - *Leonid Peshkin and Sayan Mukherjee* - 2001 |

| **Bounds on the classification error of the nearest neighbor rule** - *John A. Drakopoulos* - 1995 |

| **Bounds on the Generalization Performance of Kernel Machine Ensembles** - *Theodoros Evgeniou, Luis Perez-Breva, Massimiliano Pontil and Tomaso Poggio* - 2000 |

| **Bounds on the Number of Examples Needed for Learning Functions** - *Hans Ulrich Simon* - 1997 |

| **Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension** - *David Haussler, Michael Kearns and Robert E. Schapire* - 1994 |

| **A Branch and Bound Incremental Conceptual Clusterer** - *Arthur J. Nevins* - 1995 |

| **Breaking the Probability 1/2 Barrier in FIN-type Learning** - *R. Daley, B. Kalyanasundaram and M. Velauthapillai* - 1995 |

| **Breeding Decision Trees Using Evolutionary Techniques** - *Athanasios Papagelis and Dimitris Kalles* - 2001 |

| **A brief look at some machine learning problems in genomics** - *David Haussler* - 1997 |

| **Building a Basic Block Instruction Scheduler with Reinforcement Learning and Rollouts** - *Amy McGovern, Eliot Moss and Andrew G. Barto* - 2002 |

| **Building Committees by Clustering Models Based on Pairwise Similarity Values** - *Thomas Ragg* - 2001 |