| **Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers** - *Bianca Zadrozny and Charles Elkan* - 2001 |

| **Obtaining Simplified Rule Bases by Hybrid Learning** - *Ricardo Bezerra de Andrade e Silva and Teresa Bernarda Ludermir* - 2000 |

| **Occam's Razor** - *A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth* - April 1987 |

| **Occam's razor for functions** - *B. K. Natarajan* - 1993 |

| **Off-Policy Temporal-Difference Learning with Function Approximation** - *Doina Precup, Richard S. Sutton and Sanjoy Dasgupta* - 2001 |

| **ogistic Regression, AdaBoost and Bregman Distances** - *Michael Collins, Robert E. Schapire and Yoram Singer* - 2000 |

| **On a Connection between Kernel PCA and Metric Multidimensional Scaling** - *Christopher K. I. Williams* - 2002 |

| **On a generalized notion of mistake bounds** - *Sanjay Jain and Arun Sharma* - 1999 |

| **On a generalized notion of mistake bounds** - *Sanjay Jain and Arun Sharma* - May 2001 |

| **On Aggregating Teams of Learning Machines** - *Sanjay Jain and Arun Sharma* - 1995 |

| **On Agnostic Learning with {0,***ast*,1}-Valued and Real-Valued Hypotheses - *Philip M. Long* - 2001 |

| **On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion** - *Alex J. Smola and Bernhard Schölkopf* - 1998 |

| **On a learnability question associated to neural networks with continuous activations** - *B. DasGupta, H. T. Siegelmann and E. Sontag* - 1994 |

| **On an open problem in classification of languages** - *Sanjay Jain* - April 2001 |

| **On Approximate Learning by Multi-layered Feedforward Circuits** - *Bhaskar DasGupta and Barbara Hammer* - 2000 |

| **On approximately identifying concept classes in the limit** - *Satoshi Kobayashi and Takashi Yokomori* - 1995 |

| **On approximate truth** - *D. N. Osherson, M. Stob and S. Weinstein* - 1989 |

| **On a Question about Learning Nearly Minimal Programs** - *S. Jain* - 1995 |

| **On a question of nearly minimal identification of functions** - *S. Jain* - 1999 |

| **On a Simple Depth-First Search Strategy for Exploring Unknown Graphs** - *Stephen Kwek* - 1997 |

| **On a Theory of Inductive Inference** - *E. B. Kinber* - 1977 |

| **On Average Versus Discounted Reward Temporal-Difference Learning** - *John N. Tsitsiklis and Benjamin Van Roy* - 2002 |

| **On Barzdin's Conjecture** - *Thomas Zeugmann* - 1986 |

| **On Bayes Methods for On-Line Boolean Prediction** - *Nicolò Cesa-Bianchi, David P. Helmbold and Sandra Panizza* - 1998 |

| **On Boosting with Optimal Poly-Bounded Distributions** - *Nader H. Bshouty and Dmitry Gavinsky* - 2001 |

| **On bounded queries and approximation** - *Richard Chang and William I. Gasarch* - 1993 |

| **On Case-Based Learnabilty of Languages** - *C. Globig, K. P. Jantke, S. Lange and Y. Sakakibara* - 1997 |

| **On Case-Based Representability and Learnability of Languages** - *Christoph Globig and Steffen Lange* - 1994 |

| **On Characterizing and Learning Some Classes of Read-once Functions** - *L. Hellerstein* - 1989 |

| **On Choosing between Experimenting and Thinking when Learning** - *Ronald L. Rivest and Robert H. Sloan* - 1993 |

| **On Comparison of Limit Identification and Limit Standardization of General Recursive Functions** - *E. B. Kinber* - 1975 |

| **On computing decision regions with neural nets** - *Leong Kwan Li* - 1991 |

| **On convergence to the truth and nothing but the truth** - *K. Kelly and C. Glymour* - 1987 |

| **On decoding automata in the absence of an upper bound on the number of states** - *J. M. Barzdin* - 1970 |

| **On Dimension Reduction Mappings for Approximate Retrieval of Multi-dimensional Data** - *Takeshi Shinohara and Hiroki Ishizaka* - 2001 |

| **On Duality in Learning and the Selection of Learning Teams** - *Kalvis Aps\=ıtis, Rīsiņš Freivalds and Carl H. Smith* - August 1996 |

| **On efficient agnostic learning of linear combinations of basis functions** - *Wee Sun Lee, Peter L. Bartlett and Robert C. Williamson* - 1995 |

| **On Error Estimation for the Partitioning Classification Rule** - *Márta Horváth:* - 1999 |

| **One-Sided Error Probabilistic Inductive Inference and Reliable Frequency Identification** - *Efim Kinber and Thomas Zeugmann* - 1991 |

| **On Evidential Reasoning In A Hierarchy Of Hypothesis** - *J. Pearl* - September 1985 |

| **On Exact Learning of Unordered Tree Patterns** - *Thomas R. Amoth, Paul Cull and Prasad Tadepalli* - 2001 |

| **On exact specification by examples** - *M. Anthony, G. Brightwell, D. Cohen and J. Shawe-Taylor* - 1992 |

| **On exploiting knowledge and concept use in learning theory** - *Leonard Pitt* - 1997 |

| **On Extensional Learnability** - *K. Wexler* - 1982 |

| **On fast and simple algorithms for finding maximal subarrays and applications in learning theory** - *Andreas Birkendorf* - 1997 |

| **On feature selection: learning with exponentially many irrelevant features as training examples** - *Andrew Y. Ng* - 1998 |

| **On genetic algorithms** - *Eric B. Baum, Dan Boneh and Charles Garrett* - 1995 |

| **On handling tree-structured attributes in decision tree learning** - *Hussein Almuallim, Yasuhiro Akiba and Shigeo Kaneda* - 1995 |

| **On identification by teams and probabilistic machines** - *Sanjay Jain and Arun Sharma* - 1995 |

| **On inferring linear single-tree languages** - *Erkki Mäkinen* - 2000 |

| **On Language and Connectionism: Analysis of a Parallel Distributed Processing Model of Language Acquisition** - *S. Pinker and A. Prince* - 1987 |

| **On learning and co-learning of minimal programs** - *Sanjay Jain, Efim Kinber and Rolf Wiehagen* - 1996 |

| **On learning arithmetic read-once formulas with exponentiation** - *D. Bshouty and N. H. Bshouty* - 1994 |

| **On Learning a Union of Half Spaces** - *E. B. Baum* - March 1990 |

| **On learning binary weights for majority functions** - *S. S. Venkatesh* - 1991 |

| **On learning Boolean functions** - *B. K. Natarajan* - 1987 |

| **On learning bounded-width branching programs** - *Funda Ergün, Ravi S. Kumar and Ronitt Rubinfeld* - 1995 |

| **On learning branching programs and small depth circuits** - *Francesco Bergadano, Nader H. Bshouty, Christino Tamon and Stefano Varricchio* - 1997 |

| **On Learning Correlated Boolean Functions Using Statistical Queries (Extended Abstract)** - *Ke Yang* - 2001 |

| **On learning decision committees** - *Richard Nock and Olivier Gascuel* - 1995 |

| **On learning decision trees with large output domains** - *Nader H. Bshouty, Christino Tamon and David K. Wilson* - 1995 |

| **On learning discretized geometric concepts** - *N. Bshouty* - 1994 |

| **On learning discretized geometric concepts** - *Nader H. Bshouty, Zhixiang Chen and Steve Homer* - 1994 |

| **On learning disjunctions of zero-one threshold functions with queries** - *Tibor Hegedűs and Piotr Indyk* - 1997 |

| **On Learning Embedded Midbit Functions** - *Rocco A. Servedio* - 2002 |

| **On learning embedded symmetric concepts** - *A. Blum, P. Chalasani and J. Jackson* - 1993 |

| **On learning formulas in the limit and with assurance** - *Andris Ambainis* - January 2001 |

| **On learning from exercises** - *B. K. Natarajan* - 1989 |

| **On learning from multi-instance examples: Empirical evaluation of a theoretical approach** - *Peter Auer* - 1997 |

| **On learning from noisy and incomplete examples** - *Scott E. Decatur and Rosario Gennaro* - 1995 |

| **On Learning from Queries and Counterexamples in the Presence of Noise** - *Y. Sakakibara* - March 1991 |

| **On Learning Functions from Noise-Free and Noisy Samples via Occam's Razor** - *B. Natarajan* - 1999 |

| **On learning in the limit and non-uniform (***epsilon* , *delta* )- learning - *S. Ben-David and M. Jacovi* - 1993 |

| **On learning in the presence of unspecified attribute values** - *Nader H. Bshouty and David K. Wilson* - 1999 |

| **On Learning Limiting Programs** - *J. Case, S. Jain and A. Sharma* - 1992 |

| **On Learning Monotone Boolean Functions under the Uniform Distribution** - *Kazuyuki Amano and Akira Maruoka* - 2002 |

| **On Learning Monotone DNF Formulae under Uniform Distributions** - *L. Kucera, A. Marchettispaccamela and M. Protasi* - 1994 |

| **On Learning Monotone DNF under Product Distributions** - *Rocco A. Servedio* - 2001 |

| **On learning multiple concepts in parallel** - *Efim Kinber, Carl H. Smith, Mahendran Velauthapillai and Rolf Wiehagen* - 1995 |

| **On learning noisy theshold functions with finite precision weights** - *R. Meir and J. F. Fontanari* - 1992 |

| **On learning read-k-satisfy-j DNF** - *A. Blum, R. Khardon, E. Kushilevitz, L. Pitt and D. Roth* - 1994 |

| **On Learning Read-k-Satisfy-j DNF** - *Howard Aizenstein, Avrim Blum, Roni Khardon, Eyal Kushilevitz, Leonard Pitt and Dan Roth* - 1998 |

| **On learning ring-sum expansions** - *P. Fischer and H. Simon* - 1992 |

| **On Learning Sets and Functions** - *B. K. Natarajan* - 1989 |

| **On Learning Simple Deterministic and Probabilistic Neural Concepts** - *M. Golea and M. Marchand* - 1994 |

| **On learning systolic languages** - *Takashi Yokomori* - 1993 |

| **On learning the neural network architecture: a case study** - *Mostefa Golea* - 1997 |

| **On Learning Unions of Pattern Languages and Tree Patterns** - *Sally A. Goldman and Stephen S. Kwek* - 1999 |

| **On Learning Unions of Pattern Languages and Tree Patterns in the Mistake Bound Model** - *Sally A. Goldman and Stephen S. Kwek* - 2002 |

| **On Learning Visual Concepts and DNF Formulae** - *Eyal Kushilevitz and Dan Roth* - 1996 |

| **On learning width two branching programs** - *Nader H. Bshouty, Christino Tamon and David K. Wilson* - 1996 |

| **On Limited Nondeterminism and the Complexity of the V-C Dimension** - *Christos H. Papadimitriou and Mihalis Yannakakis* - 1996 |

| **On Limit Identification of Minimal Gödel Numbers for Functions from Enumerable Classes** - *E. B. Kinber* - 1977 |

| **On-line adaptation of a signal predistorter through dual reinforcement learning** - *Patrick Goetz, Shailesh Kumar and Risto Miikkulainen* - 1996 |

| **An on-line algorithm for improving performance in navigation.** - *A. Blum and P. Chalasani* - 1993 |

| **On-Line Algorithm to Predict Nearly as Well as the Best Pruning of a Decision Tree** - *Akira Maruoka and Eiji Takimoto* - 2001 |

| **Online Ensemble Learning: An Empirical Study** - *Alan Fern and Robert Givan* - 2000 |

| **On-line evaluation and prediction using linear functions** - *Philip M. Long* - 1997 |

| **On-line Learning and the Metrical Task System Problem** - *Avrim Blum and Carl Burch* - 2000 |

| **On-line Learning for Humanoid Robot Systems** - *Jörg Conradt, Gaurav Tevatia, Sethu Vijayakumar and Stefan Schaal* - 2000 |

| **On-line learning from search failures** - *Neeraj Bhatnagar and Jack Mostow* - 1994 |

| **On-line learning of binary and n-ary relations over multi-dimensional clusters** - *Atsuyoshi Nakamura and Naoki Abe* - 1995 |

| **On-line learning of binary lexical relations using two-dimensional weighted majority algorithms** - *Naoki Abe, Hang Li and Atsuyoshi Nakamura* - 1995 |

| **On-line learning of functions of bounded variation under various sampling schemes** - *S. E. Posner and S. R. Kulkarni* - 1993 |

| **On-line learning of linear functions** - *N. Littlestone, P. M. Long and M. K. Warmuth* - 1995 |

| **On-line learning of rectangles** - *Z. Chen and W. Maass* - 1992 |

| **On-line learning of rectangles and unions of rectangles** - *Zhixiang Chen and Wolfgang Maass* - 1994 |

| **On-line learning of rectangles in noisy environments** - *P. Auer* - 1993 |

| **Online learning versus offline learning** - *Shai Ben-David, Eyal Kushilevitz and Yishay Mansour* - 1997 |

| **Online learning via congregational gradient descent** - *Kim L. Blackmore, Robert C. Williamson, Iven M. Y. Mareels and William A. Sethares* - 1995 |

| **On-line learning with an oblivious environment and the power of randomization** - *W. Maass* - 1991 |

| **On-line learning with linear loss constraints** - *N. Littlestone and P. Long* - 1993 |

| **On-Line Learning with Linear Loss Constraints** - *David P. Helmbold, Nicholas Littlestone and Philip M. Long* - September 2000 |

| **On-line learning with malicious noise and the closure algorithm** - *Peter Auer and Nicolò Cesa-Bianchi* - 1998 |

| **On-Line Maximum Likelihood Prediction with Respect to General Loss Functions** - *Kenji Yamanishi* - 1997 |

| **On-line portfolio selection** - *Erik Ordentlich and Thomas Cover* - 1996 |

| **On-line portfolio selection using multiplicative updates** - *David P. Helmbold, Robert E. Schapire, Yoram Singer and Manfred K. Warmuth* - 1996 |

| **An On-Line Prediction Algorithm Combining Several Prediction Strategies in the Shared Bet Model** - *Ichiro Tajika, Eiji Takimoto and Akira Maruoka* - 1999 |

| **On-line Prediction and Conversion Strategies** - *Nicolo Cesa-Bianchi, Yoav Freund, David P. Helmbold and Manfred K. Warmuth* - 1996 |

| **On Machine Learning** - *Pat Langley* - 1986 |

| **On Metric Entripy, Vapnik-Chervonenkis Dimension, and Learnability for a Class of Distributions** - *S. Kulkarni* - 1989 |

| **On monotonic strategies for learning r.e.\ languages** - *Sanjay Jain and Arun Sharma* - 1994 |

| **On No-Regret Learning, Fictitious Play, and Nash Equilibrium** - *Amir Jafari, Amy Greenwald, David Gondek and Gunes Ercal* - 2001 |

| **On PAC learnability of functional dependencies** - *Tatsuya Akutsu and Atsuhiro Takasu* - 1993 |

| **On PAC learning using winnow, perceptron, and a perceptron-like algorithm** - *Rocco A. Servedio* - 1999 |

| **On Polynomial-Time Learnability in the Limit of Strictly Deterministic Automata** - *Takashi Yokomori* - 1995 |

| **On polynomial-time probably almost discriminative learnability** - *K. Yamanishi* - 1993 |

| **On prediction of individual sequences relative to a set of experts in the presence of noise** - *Tsachy Weissmann and Neri Merhav* - 1999 |

| **On probably correct classification of concepts** - *S. Kulkarni and O. Zeitouni* - 1993 |

| **On Pruning and averaging decision trees** - *Jonathan J. Oliver and David J. Hand* - 1995 |

| **On Rationality and Learning** - *J. Doyle* - 1988 |

| **On restricted-focus-of-attention learnability of Boolean functions** - *Andreas Birkendorf, Eli Dichterman, Jeffrey Jackson, Norbert Klasner and Hans Ulrich Simon* - 1998 |

| **On self-directed learning** - *Shai Ben-David, Nadav Eiron and Eyal Kushilevitz* - 1995 |

| **On sequential prediction of individual sequences relative to a set of experts** - *Nicolò Cesa-Bianchi and Gábor Lugosi* - 1998 |

| **On some misbehaviour of back-propagation with non-normalized RBFNs and a solution** - *Attilio Giordana and Roberto Piola* - 1999 |

| **An O(n**^{loglog n}) learning algorithm for DNF under the uniform distribution - *Yishay Mansour* - 1995 |

| **On synthesizing programs given by examples** - *J. M. Barzdin* - 1974 |

| **On Teaching and Learning Intersection-Closed Concept Classes** - *Christian Kuhlmann* - 1999 |

| **On the Absence of Predictive Complexity for Some Games** - *Yuri Kalnishkan and Michael V. Vyugin* - 2002 |

| **On the Application of Vector Quantization and Hidden Markov Models to Speaker-Independent, Isolated Word Recognition** - *L. R. Rabiner, S. E. Levinson and M. M. Sondhi* - April 1983 |

| **On the Asymptotic Behaviour of a Constant Stepsize Temporal-Difference Learning Algorithm** - *Vladislav Tadic* - 1999 |

| **On the average tractability of binary integer programming and the curious transition to perfect generalization in learning majority functions** - *S. Fang and S. Venkatesh* - 1993 |

| **On the Bayesian 'Occam factors' argument for Occam's razor** - *David H. Wolpert* - 1995 |

| **On the boosting ability of top-down decision tree learning algorithms** - *M. Kearns and Y. Mansour* - 1999 |

| **On the boosting algorithm for multiclass functions based on information-theoretic criterion for approximation** - *Eiji Takimoto and Akira Maruoka* - 1998 |

| **On the Boosting Pruning Problem** - *Christino Tamon and Jie Xiang* - 2000 |

| **On the Classification of Computable Languages** - *John Case, Efim Kinber, Arun Sharma and Frank Stephan* - 1997 |

| **On the Comparison of Inductive Inference Criteria for Uniform Learning of Finite Classes** - *Sandra Zilles* - 2001 |

| **On the Complexity and Optimality of Computation in the Limit** - *R. Freivalds* - 1974 |

| **On the Complexity of Effective Program Synthesis** - *R. Wiehagen* - 1986 |

| **On the complexity of function learning** - *Peter Auer, Philip M. Long, W. Maass and Gerhard J. Woeginger* - 1995 |

| **On the Complexity of Inductive Inference** - *Robert P. Daley and Carl H. Smith* - 1986 |

| **On the Complexity of Learning for a Spiking Neuron** - *Wolfgang Maass and Michael Schmitt* - 1997 |

| **On the complexity of learning for spiking neurons with temporal coding** - *W. Maass and M. Schmitt* - 1999 |

| **On the complexity of learning from counterexamples** - *W. Maass and G. Turán* - 1989 |

| **On the complexity of learning from counterexamples and membership queries** - *W. Maass and G. Turán* - 1990 |

| **On the complexity of learning from drifting distributions** - *Rakesh D. Barve and Philip M. Long* - 1996 |

| **On the complexity of learning minimum time-bounded Turing machines** - *K. Ko* - 1990 |

| **On the Complexity of Learning on Neural Nets** - *W. Maass* - 1994 |

| **On the complexity of learning strings and sequences** - *Tao Jiang and Ming Li* - 1993 |

| **On the Complexity of Minimum Inference of Regular Sets** - *D. Angluin* - 1978 |

| **On the Complexity of Program Synthesis from Examples** - *R. Wiehagen* - 1986 |

| **On the complexity of teaching** - *Sally A. Goldman and Michael J. Kearns* - 1995 |

| **On the complexity of training neural networks with continuous activation functions** - *B. DasGupta, H. T. Siegelmann and E. Sontag* - 1995 |

| **On the Computational Complexity of Approximating Distributions by Probabilistic Automata** - *Naoki Abe and Manfred K. Warmuth* - 1992 |

| **On the Computational Complexity of Training Simple Neural Networks** - *A. Blum* - May 1989 |

| **On the Computational Power of Boolean Decision Lists** - *Matthias Krause* - 2002 |

| **On the computational power of neural nets** - *Hava T. Siegelmann and Eduardo D. Sontag* - 1995 |

| **On the computational power of sigmoid versus Boolean threshold circuits** - *W. Maass, G. Schnitger and E. D. Sontag* - 1991 |

| **On the Connection Between the Complexity and Credibility of Inferred Models** - *J. Pearl* - 1978 |

| **On the Convergence of Temporal-Difference Learning with Linear Function Approximation** - *Vladislav Tadic* - 2001 |

| **On the Convergence Rate of Good-Turing Estimators** - *David McAllester and Robert E. Schapire* - 2000 |

| **On the decomposition of polychotomies into dichotomies** - *Eddy Mayoraz and Miguel Moreira* - 1997 |

| **On the Design of Networks with Hidden Variables** - *R. Dechter* - July 1990 |

| **On the Difficulty of Approximately Maximizing Agreements** - *Shai Ben-David, Nadav Eiron and Philip M. Long* - 2000 |

| **On the Dual Formulation of Regularized Linear Systems with Convex Risk** - *Tong Zhang* - 2002 |

| **On the duality between mechanistic learners and what it is they learn** - *Rīsiņš Freivalds and Carl H. Smith* - 1993 |

| **On the Efficiency of Noise-Tolerant PAC Algorithms Derived from Statistical Queries** - *Jeffrey Jackson* - 2000 |

| **On the Eigenspectrum of the Gram Matrix and Its Relationship to the Operator Eigenspectrum** - *John Shawe-Taylor, Chris Williams, Nello Cristianini and Jaz Kandola* - 2002 |

| **On the error correcting power of pluralism in BC-type inductive inference** - *Robert P. Daley* - 1983 |

| **On the error probabilty of boolean concept descriptions** - *F. Bergadano and L. Saitta* - 1989 |

| **On the exact learning of formulas in parallel** - *N. H. Bshouty and R. Cleve* - 1992 |

| **On the Existence of Linear Weak Learners and Applications to Boosting** - *Shie Mannor and Ron Meir* - 2002 |

| **On the Fourier spectrum of monotone functions** - *Nader Bshouty and Christino Tamon* - 1995 |

| **On the Handling of Continuous-Valued Attributes in Decision Tree Generation** - *Usama M. Fayyad and Keki B. Irani* - 1992 |

| **On the Hardness of Learning Acyclic Conjunctive Queries** - *Kouichi Hirata* - 2000 |

| **On the Hidden Markov Model and Dynamic Time Warping for Speech Recognition - A Unified View** - *B. Juang* - September 1985 |

| **On the Impact of Forgetting on Learning Machines** - *R. Freivalds, E. Kinber and C. Smith* - 1995 |

| **On the Inductive Inference of Programs with Anomalies** - *M. Velauthapillai* - 1986 |

| **On the inductive inference of real valued functions** - *Kalvis Aps\=ıtis, Rīsiņš Freivalds and Carl H. Smith* - 1995 |

| **On the inductive inference of recursive real-valued functions** - *Kalvis Aps\=ıtis, Setsuo Arikawa, Rusins Freivalds, Eiju Hirowatari and Carl H. Smith* - 1999 |

| **On the inference of approximate programs** - *Carl H. Smith and Mahendran Velauthapillai* - 1990 |

| **On the inference of optimal descriptions** - *R. Daley* - 1977 |

| **On the Inference of Programs Approximately Computing the Desired Function** - *C. Smith and M. Velauthapillai* - 1986 |

| **On the Inference of Sequences of Functions** - *W. I. Gasarch and C. H. Smith* - 1986 |

| **On the inference of stochastic regular grammars** - *A. Van der Mude and A. Walker* - 1978 |

| **On the inference of Turing machines from sample computations** - *A. W. Biermann* - 1972 |

| **On the intrinsic complexity of language identification** - *S. Jain and A. Sharma* - 1994 |

| **On the Intrinsic Complexity of Learning** - *Rīsiņš Freivalds, Efim Kinber and Carl H. Smith* - 1995 |

| **On the intrinsic complexity of learning recursive functions** - *Efim Kinber, Christophe Papazian, Carl Smith and Rolf Wiehagen* - 1999 |

| **On the Learnability and Design of Output Codes for Multiclass Problems** - *Koby Crammer and Yoram Singer* - 2002 |

| **On the Learnability and Design of Output Codes for Multiclass Problems** - *Koby Cramer and Yoram Singer* - 2000 |

| **On the learnability and usage of acyclic probabilistic finite automata** - *Dana Ron, Yoram Singer and Naftali Tishby* - 1998 |

| **On the learnability and usage of acyclic probabilistic finite automata** - *Dana Ron, Yoram Singer and Naftali Tishby* - 1995 |

| **On the learnability of Boolean formulae** - *M. Kearns, M. Li, L. Pitt and L. Valiant* - 1987 |

| **On the learnability of discrete distributions** - *M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire and L. Sellie* - 1994 |

| **On The Learnability Of Disjunctive Normal Form Formulas** - *Howard Aizenstein and Leonard Pitt* - 1995 |

| **On the Learnability of Disjunctive Normal Form Formulas and Decision Trees.** - *H. Aizenstein* - 1993 |

| **On the Learnability of DNF Formulae** - *L. Kucera, A. Marchetti-Spaccamela and M. Protasi* - 1988 |

| **On the learnability of finite automata** - *M. Li and U. Vazirani* - 1988 |

| **On the learnability of infinitary regular sets** - *O. Maler and A. Pneuli* - 1991 |

| **On the learnability of recursively enumerable languages from good examples** - *Sanjay Jain, Steffen Lange and Jochen Nessel* - 2001 |

| **On the learnability of rich function classes** - *J. Ratsaby and V. Maiorov* - 1999 |

| **On the learnability of the uncomputable** - *Richard H. Lathrop* - 1996 |

| **On the Learnability of Vector Spaces** - *Valentina S. Harizanov and Frank Stephan* - 2002 |

| **On the learnability of Z**_{N}-DNF formulas - *Nader H. Bshouty, Zhixiang Chen, Scott E. Decatur and Steven Homer* - 1995 |

| **On the limits of efficient teachability** - *Rocco A. Servedio* - 2001 |

| **On the Limits of Proper Learnability of Subclasses of DNF Formulas** - *Pillaipakkamnatt Krishnan and Raghavan Vijay* - 1996 |

| **On the limits of proper learnability of subclasses of DNF formulas** - *K. Pillaipakkamnatt and V. Raghavan* - 1994 |

| **On the limit synthesis of numbers of general recursive functions in various computable numerations** - *R. V. Freivalds* - 1974 |

| **On the Logic of Representing Dependencies by Graphs** - *J. Pearl and A. Paz* - May 1986 |

| **On the Necessity of Occam Algorithms** - *Raymond Board and Leonard Pitt* - 1992 |

| **On the necessity of Occam algorithms** - *L. Pitt and R. Board* - 1990 |

| **On the Noise Model of Support Vector Machines Regression** - *Massimiliano Pontil, Sayan Mukherjee and Federico Girosi* - 2000 |

| **On the Nonboundability of total effective operators** - *T. Zeugmann* - 1984 |

| **On the non-existence of maximal inference degrees for language identification** - *S. Jain and A. Sharma* - 1993 |

| **On the number of examples and stages needed for learning decision trees** - *H. U. Simon* - 1990 |

| **On the optimal capacity of binary neural networks: rigorous combinatorial approaches** - *Jeong Han Kim and James R. Roche* - 1995 |

| **On the optimality of the simple Bayesian classifier under zero-one loss** - *Pedro Domingos and Michael Pazzani* - 1997 |

| **On theory revision with queries** - *Robert H. Sloan and György Turán* - 1999 |

| **On the perceptron learning algorithm on data with high precision** - *Kai-Yeung Siu, Amir Dembo and Thomas Kailath* - 1994 |

| **On the power of decision lists** - *Richard Nock and Pascal Jappy* - 1998 |

| **On the Power of Equivalence Queries** - *R. Gavaldà* - 1994 |

| **On the Power of Incremental Learning** - *Steffen Lange and Gunter Grieser* - 2002 |

| **On the power of inductive inference from good examples** - *R. Freivalds, E. B. Kinber and R. Wiehagen* - 1993 |

| **On the power of learning robustly** - *Sanjay Jain, Carl Smith and Rolf Wiehagen* - 1998 |

| **On the Power of Monotonic Language Learning** - *S. Lange and T. Zeugmann* - 1992 |

| **On the power of polynomial discriminators and radial basis function networks** - *M. Anthony and S. Holden* - 1993 |

| **On the Power of Probabilistic Strategies in Inductive Inference** - *R. Wiehagen, R. Freivalds and E. B. Kinber* - 1984 |

| **On the Power of Recursive Optimizers** - *Thomas Zeugmann* - 1988 |

| **On the power of sigmoid neural networks** - *J. Kilian and H. Siegelmann* - 1993 |

| **On the Practice of Branching Program Boosting** - *Tapio Elomaa and Matti Kääriäinen* - 2001 |

| **On the prediction of general recursive functions** - *J. M. Barzdin and R. V. Freivald* - 1972 |

| **On the Principle Capabilities of Probabilistic Algorithms in Inductive Inference** - *R. Freivalds* - 1979 |

| **On the Problem of Local Minima in Backpropagation** - *Marco Gori and Alberto Tesi* - 1992 |

| **On the Proper Definition of Minimality in Specialization and Theory Revision** - *Stefan Wrobel* - 1993 |

| **On the Proper Learning of Axis Parallel Concepts** - *Nader H. Bshouty and Lynn Burroughs* - 2002 |

| **On the query complexity of learning** - *S. Kannan* - 1993 |

| **On the rate of convergence of error estimates for the partitioning classification rule** - *Márta Pintér* - 2002 |

| **On the Relationship between Models for Learning in Helpful Environments** - *Rajesh Parekh and Vasant Honavar* - 2000 |

| **On the relevance of time in neural computation and learnin** - *Wolfgang Maass* - 2001 |

| **On the relevance of time in neural computation and learning** - *Wolfgang Maass* - 1997 |

| **On the role of equivalence quries in MAT learning** - *S. Tani* - 1992 |

| **On the Role of Interpretive Analogy in Learning** - *B. Indurkhya* - 1991 |

| **On the role of procrastination for machine learning** - *R. Freivalds and C. H. Smith* - 1993 |

| **On the role of search for learning** - *S. A. Kurtz and C. H. Smith* - 1989 |

| **On the role of search for learning from examples** - *Stuart A. Kurtz, Carl H. Smith and Rolf Wiehagen* - 2001 |

| **On the Sample Complexity for Neural Trees** - *Michael Schmitt* - 1998 |

| **On the Sample Complexity for Nonoverlapping Neural Networks** - *Michael Schmitt* - 1999 |

| **On the Sample Complexity of Consistent Learning with One-Sided Error** - *Eiji Takimoto and Akira Maruoka* - 1993 |

| **On the sample complexity of finding good search strategies** - *P. Orponen and R. Greiner* - 1990 |

| **On the sample complexity of learning functions with bounded variation** - *Philip M. Long* - 1998 |

| **On the sample complexity of PAC learning half-spaces against the uniform distribution** - *Philip M. Long* - 1995 |

| **On the sample complexity of PAC-learning using random and chosen examples** - *B. B. Eisenberg* - 1992 |

| **On the sample complexity of various learning strategies in the probabilistic PAC learning paradigms** - *N. Abe* - 1993 |

| **On the Sample Complexity of Weak Learning** - *S. A. Goldman, M. J. Kearns and R. E. Schapire* - 1995 |

| **On the sample complextity of PAC-learning using random and chosen examples** - *B. Eisenberg and R. L. Rivest* - 1990 |

| **On the Smallest Possible Dimension and the Largest Possible Margin of Linear Arrangements Representing Given Concept Classes Uniform Distribution** - *Jürgen Forster and Hans Ulrich Simon* - 2002 |

| **On the Stochastic Complexity of Learning Realizable and Unrealizable Rules** - *Ronny Meir and Neri Merhav* - 1995 |

| **On the Strength of Incremental Learning** - *Steffen Lange and Gunter Grieser* - 1999 |

| **On the structure of the Degrees of Inferability** - *Martin Kummer and Frank Stephan* - 1996 |

| **On the Study of First Language Acquisition** - *D. Osherson and S. Weinstein* - 1992 |

| **On the Sufficiency of Surface Data for the Learning of Transformational Languages** - *K. Wexler and H. Hamburger* - 1973 |

| **On the synthesis in the limit of almost minimal Gödel numbers** - *E. B. Kinber* - 1974 |

| **On the Synthesis of Fastest Programs in Inductive Inference** - *Thomas Zeugmann* - 1983 |

| **On the Synthesis of Finite-State Machines from Samples of Their Behavior** - *A. W. Biermann and J. Feldman* - 1972 |

| **On the Synthesis of Strategies Identifying Recursive Functions** - *Sandra Zilles* - 2001 |

| **On the uniform convergence of relative frequencies of events to their probabilities** - *V. N. Vapnik and A. Y. Chervonenkis* - 1971 |

| **On the Uniform Learnability of Approximations to Non-Recursive Functions** - *Frank Stephan and Thomas Zeugmann* - 1999 |

| **On the Use of Pairwise Comparison of Hypotheses in Evolutionary Learning Applied to Learning from Visual Examples** - *Krzysztof Krawiec* - 2001 |

| **On the VC Dimension of Bounded Margin Classifiers** - *Don Hush and Clint Scovel* - 2001 |

| **On the VC-dimension of depth four threshold circuits and the complexity of Boolean-valued functions** - *Akito Sakurai* - 1995 |

| **On the V**_{\}gamma Dimension for Regression in Reproducing Kernel Hilbert Spaces - *Theodoros Evgeniou and Massimiliano Pontil* - 1999 |

| **On the Worst-Case Analysis of Temporal-Difference Learning Algorithms** - *Robert E. Schapire and Manfred K. Warmuth* - 1996 |

| **On threshold circuits for parity** - *R. Paturi and M. E. Saks* - 1990 |

| **On Training Simple Neural Networks and Small-weight Neurons** - *T. Hegedüs* - 1994 |

| **On uniform learnability of language families** - *S. Kapur and G. Bilardi* - 1992 |

| **On Using Extended Statistical Queries to Avoid Membership Queries** - *Nader H. Bshouty and Vitaly Feldman* - 2001 |

| **On Using the Fourier transform to learn disjoint DNF** - *R. Khardon* - March 1994 |

| **On Variants of Iterative Learning** - *Steffen Lange and Gunter Grieser* - 1998 |

| **On Weak Learning** - *David P. Helmbold and Manfred K. Warmuth* - 1995 |

| **Open problems in Systems that learn** - *Mark Fulk, Sanjay Jain and Daniel N. Osherson* - 1994 |

| **Open Theoretical Questions in Reinforcement Learning** - *Richard S. Sutton* - 1999 |

| **Opportunism and Learning** - *K. Hammond, T. Converse, M. Marks and C. M. Seifert* - 1993 |

| **Optimal attribute-efficient learning of disjunction, parity, and threshold functions** - *Ryuhei Uehara, Kensei Tsuchida and Ingo Wegener* - 1997 |

| **An optimal-control application of two paradigms of on-line learning** - *V. G. Vovk* - 1994 |

| **Optimal layered learning: a PAC approach to incremental sampling** - *Stephen Muggleton* - 1993 |

| **Optimally Parsing a Sequence into Different Classes Based on Multiple Types of Information** - *G. D. Stormo and D. Haussler* - August 1994 |

| **Optimally-Smooth Adaptive Boosting and Application to Agnostic Learning** - *Dmitry Gavinsky* - 2002 |

| **An optimal parallel algorithm for learning DFA** - *J. L. Balcázar, J. Díaz, R. Gavaldà and O. Watanabe* - 1994 |

| **Optimal Sequential Probability Assignment for Individual Sequences** - *M. J. Weinberger, N. Merhav and M. Feder* - March 1994 |

| **Optimal Strategies - Learning from Examples - Boolean Equations** - *Christian Posthoff and Michael Schlosser* - 1995 |

| **Optimal unsupervised learning in a single-layer linear feedforward neural network** - *T. D. Sanger* - 1989 |

| **Optimization problem in inductive inference** - *A. Ambainis* - 1995 |

| **Optimizing Average Reward Using Discounted Rewards** - *Sham Kakade* - 2001 |

| **Optimizing Epochal Evolutionary Search: Population-Size Dependent Theory** - *Erik Van Nimwegen and James P. Crutchfield* - 2001 |

| **Option decision trees with majority votes** - *Ron Kohavi and Clayton Kunz* - 1997 |

| **OPT-KD: an algorithm for optimizing kd-trees** - *Douglas A. Talbert and Douglas H. Fisher* - 1999 |

| **Oracles and queries that are sufficient for exact learning** - *Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan and Christino Tamon* - 1996 |

| **Oracles and queries that are sufficient for exact learning** - *N. H. Bshouty, R. Cleve, S. Kannan and C. Tamon* - 1994 |

| **Oracles in ***Sigma*^{p}_{2} are sufficient for exact learning - *Johannes Köbler and Wolfgang Lindner* - 1997 |

| **Ordered Term Tree Languages which Are Polynomial Time Inductively Inferable from Positive Data** - *Yusuke Suzuki, Takayoshi Shoudai, Tomoyuki Uchida and Tetsuhiro Miyahara* - 2002 |

| **Ordinal mind change complexity of language identification** - *Andris Ambainis, Sanjay Jain and Arun Sharma* - 1999 |

| **Overfitting Avoidance as Bias** - *Cullen Schaffer* - 1993 |