| **PAB-decisions for Boolean and real-valued features** - *S. Anoulova, P. Fischer, S. Pölt and H. U. Simon* - 1992 |

| **PAC Adaptive Control of Linear Systems** - *Claude-Nicolas Fiechter* - 1997 |

| **A `PAC' Algorithm for Making Feature Maps** - *Philip Laird and Evan Gamble* - 1991 |

| **PAC Analogues of Perceptron and Winnow via Boosting the Margin** - *Rocco A. Servedio* - 2000 |

| **PAC Analogues of Perceptron and Winnow Via Boosting the Margin** - *R. Servedio* - 2002 |

| **A PAC Analysis of a Bayesian Estimator** - *John Shawe-Taylor and Robert C. Williamson* - 1997 |

| **PAC-Bayesian model averaging** - *David A. McAllester* - 1999 |

| **PAC Bounds for Multi-armed Bandit and Markov Decision Processes** - *Eyal Even-Dar, Shie Mannor and Yishay Mansour* - 2002 |

| **Packet Analysis in Congested Networks** - *Masaki Fukushima and Shigeki Goto* - 2001 |

| **PAC-learnability of constrained nonrecursive logic programs** - *Sašo Džeroski, Stephen Muggleton and Stuart Russell* - 1995 |

| **PAC-learnability of determinate logic programs** - *S. Dzeroski, S. Muggleton and S. Russell* - 1992 |

| **Pac-Learning a Restricted Class of Recursive Logic Programs** - *William Cohen* - 1993 |

| **PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples** - *Philip M. Long and Lei Tan* - 1998 |

| **PAC learning from general examples** - *Paul Fischer, Klaus-Uwe Höffgen and Hanno Lefmann* - 1997 |

| **PAC Learning from Positive Statistical Queries** - *François Denis* - 1998 |

| **PAC Learning Intersections of Halfspaces with Membership Queries** - *Stephen Kwek and Leonard Pitt* - 1998 |

| **PAC learning of concept classes through the boundaries of their items** - *B. Apolloni and S. Chiaravalli* - 1997 |

| **PAC Learning of One-Dimensional Patterns** - *Paul W. Goldberg, Sally A. Goldman and Stephen D. Scott* - 1996 |

| **Pac-Learning Recursive Logic Programs: Efficient Algorithms** - *William W. Cohen* - 1995 |

| **Pac-Learning Recursive Logic Programs: Negative Results** - *William W. Cohen* - 1995 |

| **PAC Learning under Helpful Distributions** - *François Denis and Rémi Gilleron* - 2001 |

| **PAC learning under helpful distributions** - *François Denis and Rémi Gilleron* - 1997 |

| **PAC learning using Nadaraya-Watson estimator based on orthonormal systems** - *Hongzhu Qiao, Nageswara S. V. Rao and V. Protopopescu* - 1997 |

| **PAC learning with constant-partition classification noise and applications to decision tree induction** - *Scott Decatur* - 1997 |

| **PAC learning with generalized samples and an application to stochastic geometry** - *S. R. Kulkarni, S. K. Mitter, J. N. Tsitsiklis and O. Zeitouni* - 1992 |

| **PAC learning with irrelevant attributes** - *Aditi Dhagat and Lisa Hellerstein* - 1994 |

| **PAC Learning with Nasty Noise** - *Nader H. Bshouty, Nadav Eiron and Eyal Kushilevitz* - 1999 |

| **PAC Learning with Nasty Noise** - *Nader H. Bshouty, Nadav Eiron and Eyal Kushilevitz* - 2002 |

| **PAC learning with simple examples** - *F. Denis, C. D'Halluin and R. Gilleron* - 1996 |

| **PAC-like upper bounds for the sample complexity of leave-one-out cross-validation** - *Sean B. Holden* - 1996 |

| **PACS, simple-PAC and query learning** - *Jorge Castro and David Guijarro* - 2000 |

| **Pairwise Comparison of Hypotheses in Evolutionary Learning** - *Krzysztof Krawiec* - 2001 |

| **PAL: A Pattern and dash;Based First and dash;Order Inductive System** - *Eduardo F. Morales* - 1997 |

| **PALO: A probabilistic hill-climbing algorithm** - *Russell Greiner* - July 1996 |

| **Paradigms in Measure Theoretic Learning and in Informant Learning** - *Franco Montagna and Giulia Simi* - 1999 |

| **Parallel Attribute-Efficient Learning of Monotone Boolean Functions** - *Peter Damaschke* - 2000 |

| **Parallel Distributed Processing - Explorations in the Microstructure of Cognition** - *David E. Rumelhart, James L. McClelland and the PDP Research Group* - 1986 |

| **Parallel Distributed Processing (Volume I: Foundations)** - *D. E. Rumelhart and J. L. McClelland* - 1986 |

| **Parallel Networks that Learn to Pronounce English Text** - *T. J. Sejnowski and C. R. Rosenberg* - February 1987 |

| **A Parallel Network that Learns to Play Backgammon** - *G. Tesauro and T. J. Sejnowski* - 1989 |

| **Parameter Estimation in Stochastic Logic Programs** - *James Cussens* - 2001 |

| **Parameterized learning complexity** - *R. Downey, P. Evans and M. Fellows* - 1993 |

| **A parametrization scheme for classifying models of learnability** - *S. Ben-David, G. M. Benedek and Y. Mansour* - 1989 |

| **Partial Linear Trees** - *Lu\'ıs Torgo* - 2000 |

| **Partially Supervised Learning for Nearest Neighbor Classifiers** - *Hiroyuki Matsunaga and Kiichi Urahama* - 1996 |

| **Partially Supervised Text Classification: Combining Labeled and Unlabeled Documents Using an EM-like Scheme** - *Carsten Lanquillon* - 2000 |

| **Partial Occam's razor and its applications** - *Carlos Domingo, Tatsuie Tsukiji and Osamu Watanabe* - 1997 |

| **The Parti-game Algorithm for Variable Resolution Reinforcement Learning in Multidimensional State-spaces** - *Andrew W. Moore and Christopher G. Atkeson* - 1995 |

| **Passive distance learning for robot navigation** - *Sven Koenig and Reid G. Simmons* - 1996 |

| **Pasting Small Votes for Classification in Large Databases and On-Line** - *Leo Breiman* - 1999 |

| **Path Kernels and Multiplicative Updates** - *Eiji Takimoto and Manfred K. Warmuth* - 2002 |

| **A Pathology of Bottom-Up Hill-Climbing in Inductive Rule Learning** - *Johannes Fürnkranz* - 2002 |

| **Pattern Classification and Scene Analysis** - *R. O. Duda and P. E. Hart* - 1973 |

| **A Pattern Classification Approach to Evaluation Function Learning** - *K. Lee and S. Mahajan* - August 1988 |

| **Pattern discovery in biosequences** - *Alvis Brāzma, Inge Jonassen, Jaak Vilo and Esko Ukkonen* - 1998 |

| **Pattern Inference** - *T. Shinohara and S. Arikawa* - 1995 |

| **Pattern languages are not learnable** - *R. E. Schapire* - 1990 |

| **Pattern Recognition and Density Estimation under the General i.i.d Assumption** - *Ilia Nouretdinov, Volodya Vovk, Michael Vyugin and Alex Gammerman* - 2001 |

| **Pattern Recognition and Valiant's Learning Framework** - *L. Saitta and F. Bergadano* - February 1993 |

| **Pattern recognition as rule guided inductive inference** - *R. Michalski* - 1980 |

| **PCA-Based Model Selection and Fitting for Linear Manifolds** - *Atsushi Imiya and Hisashi Ootani* - 2001 |

| **The Perceptron Algorithm is Fast for Nonmalicious Distributions** - *E. B. Baum* - 1990 |

| **The perceptron algorithm vs. Winnow: linear vs. logarithmic mistake bounds when few input variables are relevant** - *Jyrki Kivinen and Manfred K. Warmuth* - 1995 |

| **The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain** - *F. Rosenblatt* - 1958 |

| **Perceptrons** - *M. Minsky and S. Papert* - 1969 |

| **A Perceptual Criterion for Visually Controlling Learning** - *Masaki Suwa and Hiroshi Motoda* - 1993 |

| **Performance bounds for nonlinear time series prediction** - *Ron Meir* - 1997 |

| **A performance evaluation of automatic survey classifiers** - *P. Viechnicki* - 1998 |

| **Performance Guarantees for Hierarchical Clustering** - *Sanjoy Dasgupta* - 2002 |

| **Performance Improvement of Robot Continuous-Path Operation through Iterative Learning Using Neural Networks** - *Peter C. Y. Chen, James K. Mills and Kenneth C. Smith* - 1996 |

| **Performance of a Stochastic Learning Chip** - *J. Alspector and R. B. Allen* - 1989 |

| **Periodicity in generations of automata** - *J. Case* - 1974 |

| **Permutations and Control Sets for Learning Non-regular Language Families** - *Henning Fernau and Jose M. Sempere:* - 2000 |

| **Pessimistic decision tree pruning based on tree size** - *Yishay Mansour* - 1997 |

| **Pharmacophore discovery using the inductive logic programming system PROG0L** - *Paul Finn, Stephen Muggleton, David Page and Ashwin Srinivasan* - 1998 |

| **Phase Transitions in Relational Learning** - *Attilio Giordana and Lorenza Saitta* - 2000 |

| **Phoneme Recognition Using Time-Delay Neural Networks** - *A. Waibel, T. Hanazawa, G. Ginton and K. Shikano* - 1987 |

| **A Physiological Basis for a Theory of Synapse Modification** - *M. F. Bear, L. N. Cooper and F. F. Ebner* - July 3 1987 |

| **Piecemeal Graph Exploration by a Mobile Robot** - *Baruch Awerbuch, Margrit Betke, Ronald L. Rivest and Mona Singh* - 1999 |

| **Piecemeal Learning of an Unknown Environment** - *Margrit Betke, Ronald L. Rivest and Mona Singh* - 1995 |

| **Planning and learning in permutation groups** - *A. Fiat, S. Moses, A. Shamir, I. Shimshoni and G. Tardos* - 1989 |

| **Planning with abstraction based on partial predicate mappings** - *Yoshiaki Okubo and Makoto Haraguchi* - 1993 |

| **Plausible Justification Trees: A Framework for Deep and Dynamic Integration of Learning Strategies** - *Gheorghe Tecuci* - 1993 |

| **Playing the matching-shoulders lob-pass game with logarithmic regret** - *J. Kilian, K. J. Lang and B. A. Pearlmutter* - 1994 |

| **Policy invariance under reward transformations: theory and application to reward shaping** - *Andrew Y. Ng, Daishi Harada and Stuart Russell* - 1999 |

| **Polylogarithmic-overhead piecemeal graph exploration** - *Baruch Awerbuch and Stephen G. Kobourov* - 1998 |

| **A Polynomial Approach to the Constructive Induction of Structural Knowledge** - *Jörg-Uwe Kietz and Katharina Morik* - 1994 |

| **Polynomial Bounds for VC Dimension of Sigmoidal and General Pfaffian Neural Networks** - *Marek Karpinski and Angus Macintyre* - 1997 |

| **Polynomial bounds for VC dimension of sigmoidal neural networks** - *Marek Karpinski and Angus Macintyre* - 1995 |

| **Polynomial Learnability as a Formal Model of Natural Language Acquisition** - *Naoki Abe* - 1989 |

| **Polynomial learnability of linear threshold approximations** - *T. Bylander* - 1993 |

| **Polynomial learnability of probabilistic concepts with respect to the Kullback-Leibler divergence** - *N. Abe, J. Takeuchi and M. K. Warmuth* - 1991 |

| **Polynomial Learnability of Stochastic Rules with Respect to the KL-Divergence and Quadratic Distance** - *Naoki Abe, Jun-ichi Takeuchi and Manfred K. Warmuth* - 2001 |

| **Polynomial learning of semilinear sets** - *N. Abe* - 1989 |

| **Polynomially Sized Boolean Circuits are not Learnable** - *D. Beaver* - December 1987 |

| **Polynomially Sparse Variations and Reducibility among prediction problems** - *N. Abe and O. Watanabe* - July 1992 |

| **A polynomial time algorithm for finding finite unions of tree pattern languages** - *H. Arimura, T. Shinohara and S. Otsuki* - 1993 |

| **A polynomial-time algorithm for learning k-variable pattern languages from examples** - *M. Kearns and L. Pitt* - 1989 |

| **A Polynomial-Time Algorithm for Learning Noisy Linear Threshold Functions** - *Avrim Blum, Alan M. Frieze, Ravi Kannan and Santosh Vempala* - 1998 |

| **Polynomial time algorithms for learning neural nets** - *E. B. Baum* - 1990 |

| **A polynomial time algorithm that learns two hidden net units** - *E. Baum* - 1990 |

| **A Polynomial Time Approximation Scheme for Inferring Evolutionary Trees from Quartet Topologies and Its Application** - *Tao Jiang, Paul Kearney and Ming Li* - 2000 |

| **Polynomial-time identification of very regular languages in the limit** - *N. Tanida and T. Yokomori* - 1992 |

| **A polynomial time incremental algorithm for learning DFA** - *Rajes Parekh, Codrin Nichitiu and Vasant Honavar* - 1998 |

| **Polynomial Time Inductive Inference of Ordered Tree Patterns with Internal Structured Variables from Positive Data** - *Yusuke Suzuki, Ryuta Akanuma, Takayoshi Shoudai, Tetsuhiro Miyahara and Tomoyuki Uchida* - 2002 |

| **Polynomial time inductive inference of regular term tree languages from positive data** - *Satoshi Matsumoto, Yukiko Hayashi and Takayoshi Shoudai* - 1997 |

| **Polynomial-time inference of all valid implications for Horn and related formulae** - *E. Boros, Y. Crama and P. L. Hammer* - 1990 |

| **Polynomial-time inference of arbitrary pattern languages** - *S. Lange and R. Wiehagen* - 1991 |

| **Polynomial time inference of a subclass of context-free transformations** - *H. Arimura, H. Ishizaka and T. Shinohara* - 1992 |

| **Polynomial Time Inference of Extended Regular Pattern Languages** - *T. Shinohara* - 1982 |

| **Polynomial-time inference of general pattern languages** - *K. P. Jantke* - 1984 |

| **Polynomial-Time Inference of Paralleled Even Monogenic Pure Context-Free Languages** - *Noriyuki Tanida* - 1998 |

| **Polynomial time inference of pattern languages and its applications** - *T. Shinohara* - 1982 |

| **Polynomial time inference of unions of tree pattern languages** - *H. Arimura, T. Shinohara and S. Otsuki* - 1992 |

| **Polynomial-time learnability of logic programs with local variables from entailment** - *M. R. K. Krishna Rao and A. Sattar* - 2001 |

| **Polynomial time learnability of simple deterministic languages** - *Hiroki Ishizaka* - 1990 |

| **Polynomial Time Learnability of Simple Deterministic Languages from MAT and a Representative Sample** - *Yasuhiro Tajima, Etsuji Tomita and Mitsuo Wakatsuki* - 2000 |

| **A Polynomial Time Learning Algorithm Simple Deterministic Languages via Membership Queries and a Representative Sample** - *Yasuhiro Tajima and Etsuji Tomita* - 2000 |

| **Polynomial-time Learning of Elementary Formal Systems** - *Satoru Miyano, Ayumi Shinohara and Takeshi Shinohara* - 2000 |

| **Polynomial-time learning of very simple grammars from positive data** - *T. Yokomori* - 1991 |

| **Polynomial time learning with version spaces** - *Haym Hirsh* - 1992 |

| **Polynomial-time MAT learning of multilinear logic programs** - *Kimihito Ito and Akihiro Yamamoto* - 1993 |

| **Polynomial uniform convergence and polynomial-sample learnability** - *A. Bertoni, P. Campadelli, A. Morpurgo and S. Panizza* - 1992 |

| **Positive and Unlabeled Examples Help Learning** - *Francesco De Comité, François Denis, Remi Gilleron and Fabien Letouzey* - 1999 |

| **A-posteriori Characterizations in Inductive Inference of Recursive Functions** - *Thomas Zeugmann* - 1983 |

| **Potential-Based Algorithms in On-line Prediction and Game Theory** - *Nicolò Cesa-Bianchi and Gabor Lugosi* - 2001 |

| **A powerful heuristic for the discovery of complex patterned behavior** - *Raúl E. Valdés-Pérez and Aurora Pérez* - 1994 |

| **The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length** - *Dana Ron, Yoram Singer and Naftali Tishby* - 1996 |

| **The Power of Pluralism for Automatic Program Synthesis** - *Carl H. Smith* - 1982 |

| **The power of probabilism in popperian FINite learning** - *R. Daley, B. Kalyanasundaram and M. Velauthapillai* - 1994 |

| **The power of procrastination in inductive inference: how it depends on used ordinal notations** - *Andris Ambainis* - 1995 |

| **The Power of Self-Directed Learning** - *S. A. Goldman and R. H. Sloan* - 1994 |

| **The power of team exploration: two robots can learn unlabeled directed graphs** - *Michael A. Bender and Donna K. Slonim* - 1994 |

| **The power of vacillation** - *J. Case* - 1988 |

| **The Power of Vacillation in Language Learning** - *John Case* - 1999 |

| **Practical algorithms for on-line sampling** - *Carlos Domingo, Ricard Gavaldà and Osamu Watanabe* - 1998 |

| **A practical approach for evaluating generalization performance** - *Marjorie Klenin* - 1997 |

| **Practical Issues in Temporal Difference Learning** - *Gerald Tesauro* - 1992 |

| **Practical PAC Learning** - *Dale Schuurmans and Russell Greiner* - 1995 |

| **Practical Reinforcement Learning in Continuous Spaces** - *William D. Smart and Leslie Pack Kaelbling* - 2000 |

| **The Precision of Query Points as a Resource for Learning Convex Polytopes with Membership Queries** - *Paul Goldberg and Stephen Kwek* - 2000 |

| **Predicate invention and utilization** - *S. Muggleton* - 1994 |

| **Predicate Invention in ILP - an Overview** - *Irene Stahl* - 1993 |

| **Predicate Invention in Inductive Data Engineering** - *Peter A. Flach* - 1993 |

| **Predicting {0,1} Functions on Randomly Drawn Points** - *D. Haussler, N. Littlestone and M. K. Warmuth* - 1994 |

| **Predicting a binary sequence almost as well as the optimal biased coin** - *Yoav Freund* - 1996 |

| **Predicting multiprocessor memory access patterns with learning models** - *M. F. Sakr, S. P. Levitan, D. M. Chiarulli, B. G. Horne and C. L. Giles* - 1997 |

| **Predicting Nearly as Well as the Best Pruning Graph** - *Eiji Takimoto and Manfred K. Warmuth* - 2002 |

| **Predicting nearly as well as the best pruning of a decision tree** - *D. P. Helmbold and R. E. Schapire* - 1997 |

| **Predicting nearly as well as the best pruning of a decision tree through dynamic programming scheme** - *Eiji Takimoto, Akira Maruoka and Volodya Vovk* - 2001 |

| **Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph** - *Eiji Takimoto and Manfred K. Warmuth* - 1999 |

| **Predicting protein secondary structure using stochastic tree grammars** - *Naoki Abe and Hiroshi Mamitsuka* - 1997 |

| **Predicting the Future: A Connectionist Approach** - *A. Weigend, B. Huberman and D. Rumelhart* - 1990 |

| **Predicting the Future of Discrete Sequences from Fractal Representations of the Past** - *Peter Tino and Georg Dorffner* - 2001 |

| **Predicting the Generalization Performance of Cross Validatory Model Selection Criteria** - *Tobias Scheffer* - 2000 |

| **Prediction algorithms and confidence measures based on algorithmic randomness theory** - *Alex Gammerman and Volodya Vovk* - 2002 |

| **Prediction and Dimension** - *Lance Fortnow and Jack H. Lutz* - 2002 |

| **Prediction and limiting synthesis of recursively enumerable classes of functions** - *J. M. Barzdin and R. Freivalds* - 1974 |

| **Prediction, learning, uniform convergence, and scale-sensitive dimensions** - *Peter L. Bartlett and Philip M. Long* - 1998 |

| **Prediction Preserving Reducibility** - *L. Pitt and M. K. Warmuth* - December 1990 |

| **Predictive Complexity and Information** - *Michael V. Vyugin and Vladimir V. V'yugin* - 2002 |

| **Predictive Hebbian learning** - *Terrence J. Sejnowski, Peter Dayan and P. Read Montague* - 1995 |

| **Predictive Learning Models for Concept Drift** - *John Case, Sanjay Jain, Susanne Kaufmann, Arun Sharma and Frank Stephan* - 1998 |

| **Predictive learning models for concept drift** - *John Case, Sanjay Jain, Susanne Kaufmann, Arun Sharma and Frank Stephan* - 2001 |

| **A predictive model for self organizing systems, Part I** - *G. Pask and H. V. Foerster* - 1960 |

| **A predictive model for self organizing systems, Part II** - *G. Pask and H. V. Foerster* - 1961 |

| **Preface** - *S. Arikawa and M. M. Richter* - 1997 |

| **Preface** - *Osamu Watanabe and Arun Sharma* - 2002 |

| **A preliminary PAC analysis of theory revision** - *Raymond J. Mooney* - 1995 |

| **Preliminary study on program synthesis based on induction and verification** - *K. Furukawa* - 1992 |

| **Prequential Analysis, Stochastic Complexity and Bayesian Inference** - *A. P. Dawid* - 1992 |

| **Prequential and Cross-Validated Regression Estimation** - *Dharmendra S. Modha and Elias Masry* - 1998 |

| **Preservation of predictability under polynomially sparse variations and its applications** - *N. Abe* - 1992 |

| **Preventing Overfitting of cross-validation data** - *Andrew Y. Ng* - 1997 |

| **A Principal Components Approach to Combining Regression Estimates** - *Christopher J. Merz and Michael J. Pazzani* - 1999 |

| **Prioritized Sweeping: Reinforcement Learning With Less Data and Less Time** - *Andrew W. Moore and Christopher G. Atkeson* - 1993 |

| **A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization** - *Thorsten Joachims* - 1997 |

| **Probabilistic and team PFIN-type learning: general properties** - *Andris Ambainis* - 1996 |

| **A probabilistic approach to feature selection - a filter solution** - *Huan Liu and Rudy Setiono* - 1996 |

| **Probabilistic DFA Inference using Kullback-Leibler Divergence and Minimality** - *Franck Thollard, Pierre Dupont and Colin de la Higuera* - 2000 |

| **A Probabilistic Framework for SVM Regression and Error Bar Estimation** - *J. B. Gao, S. R. Gunn, C. J. Harris and M. Brown* - 2002 |

| **Probabilistic hill-climbing** - *William W. Cohen, Russell Greiner and Dale Schuurmans* - 1994 |

| **Probabilistic Hill-Climbing: Theory and Applications** - *Russell Greiner* - June 1992 |

| **A Probabilistic Identification Result** - *Eric McCreath* - 2000 |

| **Probabilistic Inductive Inference** - *L. Pitt* - 1989 |

| **Probabilistic inductive inference: a survey** - *Andris Ambainis* - 2001 |

| **Probabilistic Inductive Inference (Ph.D Thesis)** - *L. Pitt* - 1985 |

| **Probabilistic instance-based learning** - *Henry Tirri, Petri Kontkanen and Petri Myllymäki* - 1996 |

| **Probabilistic k-Testable Tree Languages** - *Juan Ramón Rico-Juan, Jorge Calera-Rubio and Rafael C. Carrasco* - 2000 |

| **Probabilistic language learning under monotonicity constraint** - *Léa Meyer* - 1997 |

| **Probabilistic limit identification up to 'small' sets** - *Juris Vīksna* - 1996 |

| **Probabilistic linear tree** - *João Gama* - 1997 |

| **Probabilistic Program Synthesis** - *K. Podnieks* - 1977 |

| **Probabilistic self-structuring and learning** - *David Garvin and Peter Rayner* - 1997 |

| **Probabilistic synthesis of enumerated classes of functions** - *K. M. Podnieks* - 1975 |

| **Probabilistic Versus Deterministic Inductive Inference in Nonstandard Numberings** - *R. Freivalds, E. B. Kinber and R. Wiehagen* - 1988 |

| **Probabilistic versus Deterministic Memory Limited Learning** - *R. Freivalds, E. B. Kinber and C. H. Smith* - 1995 |

| **A Probability Analysis on the Value of Unlabeled Data for Classification Problems** - *Tong Zhang and Frank J. Oles* - 2000 |

| **Probability and confirmation** - *H. Putnam* - 1975 |

| **Probability and Measure** - *Patrick Billingsley* - 1986 |

| **Probability and Plurality for Aggregations of Learning Machines** - *L. Pitt and C. Smith* - 1988 |

| **Probability density estimation and local basis function neural networks** - *Padhraic Smyth* - 1994 |

| **Probability inequalities for sums of bounded random variables** - *W. Hoeffding* - March 1963 |

| **Probability is more powerful than team for language identification from positive data** - *S. Jain and A. Sharma* - 1993 |

| **Probability Matching, the Magnitude of Reinforcement, and Classifier System Bidding** - *David E. Goldberg* - 1990 |

| **Probability theory for the Brier game** - *V. Vovk* - 1997 |

| **Probability theory for the Brier game** - *V. Vovk* - 2001 |

| **Probably almost Bayes decisions** - *P. Fischer, S. Pölt and H. U. Simon* - 1991 |

| **Probably Almost Bayes Decisions** - *Svetlana Anoulova, Paul Fischer, Stefan Pölt and Hans Ulrich Simon* - August 1996 |

| **Probably Almost Discriminative Learning** - *Kenji Yamanishi* - 1995 |

| **Probably Approximate Learning of Sets and Functions** - *B. K. Natarajan* - April 1991 |

| **Probably-Approximate Learning over Classes of Distributions** - *B. K. Natarajan* - 1989 |

| **Probably Approximately Correct Learning** - *D. Haussler* - 1990 |

| **The Probably Approximately Correct (PAC) and Other Learning Models** - *D. Haussler and M. K. Warmuth* - 1993 |

| **Probably Approximately Optimal Derivation Strategies** - *Russell Greiner and Pekka Orponen* - April 1991 |

| **Probably Approximately Optimal Satisficing Strategies** - *Russell Greiner and Pekka Orponen* - April 1996 |

| **Problem Decomposition for Behavioural Cloning** - *Dorian Suc and Ivan Bratko* - 2000 |

| **The Problem of Expensive Chunks and its Solution by Restricting Expressiveness** - *Milind Tambe, Allen Newell and Paul S. Rosenbloom* - 1990 |

| **Problems in Inductive Inference** - *J. Case* - 1982 |

| **Problems of computational and information complexity in machine vision and learning** - *S. R. Kulkarni* - 1991 |

| **The problem with noise and small disjuncts** - *Gary M. Weiss and Haym Hirsh* - 1998 |

| **A procedure for unsupervised lexicon learning** - *Anand Venkataraman* - 2001 |

| **Proceedings of the Eighth Annual Conference on Computational Learning Theory** - *Wolfgang Maass* - 1995 |

| **Proceedings of the Eleventh Annual Conference on Computational Learning Theory** - *Peter Bartlett and Yishay Mansour* - 1998 |

| **Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory** - *David Haussler* - 1992 |

| **Proceedings of the First Annual Workshop on Computational Learning Theory** - *D. Haussler and L. Pitt* - 1988 |

| **Proceedings of the First International Workshop on Algorithmic Learning Theory** - *S. Arikawa and S. Goto and S. Ohsuga and T. Yokomori* - 1990 |

| **Proceedings of the Fourth Annual Workshop on Computational Learning Theory** - *Leslie G. Valiant and Manfred K. Warmuth* - 1991 |

| **Proceedings of the Ninth Annual Conference on Computational Learning Theory** - *Avrim Blum and Michael Kearns* - 1996 |

| **Proceedings of the Second Annual Workshop on Computational Learning Theory** - *Ronald Rivest and David Haussler and Manfred K. Warmuth* - 1989 |

| **Proceedings of the Second International Workshop on Algorithmic Learning Theory** - *S. Arikawa and A. Maruoka and T. Sato* - 1991 |

| **Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory** - *Manfred Warmuth* - 1994 |

| **Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory** - *Lenny Pitt* - 1993 |

| **Proceedings of the Tenth Annual Conference on Computational Learning Theory** - *Yaov Freund and Robert Shapire* - 1997 |

| **Proceedings of the Third Annual Workshop on Computational Learning Theory** - *Mark A. Fulk and John Case* - 1990 |

| **Proceedings of the Thirteenth Annual Conference on Computational Learning Theory** - *N. Cesa-Bianchi and S. Goldman* - 2000 |

| **Proceedings of the Twelfth Annual Conference on Computational Learning Theory** - *Shai Ben-David and Phil Long* - 1999 |

| **A process-oriented heuristic for model selection** - *Pedro Domingos* - 1998 |

| **Prognostication of automata and functions** - *J. M. Barzdin* - 1971 |

| **Program Construction From Examples** - *P. D. Summers* - 1976 |

| **Program Error Detection/Correction: Turning PAC Learning into PERFECT Learning** - *Manuel Blum* - 1997 |

| **Program Size and Teams for Computational Learning** - *A. Sharma* - 1990 |

| **Program size in restricted programming languages** - *A. Meyer* - 1972 |

| **Program Size Restrictions in Computational Learning** - *Sanjay Jain and Arun Sharma* - 1994 |

| **Program Size Restrictions in Inductive Learning** - *S. Jain and A. Sharma* - 1990 |

| **Program Synthesis in the Presence of Infinite Number of Inaccuracies** - *Sanjay Jain* - 1996 |

| **Projection Learning** - *Leslie G. Valiant* - 1999 |

| **Projection Pursuit** - *Peter J. Huber* - 1985 |

| **Projection pursuit learning: some theoretical issues** - *Ying Zhao and Christopher G. Atkeson* - 1994 |

| **Projection Pursuit Regression** - *J. H. Friedman and W. Stuetzle* - December 1981 |

| **Proper learning algorithm for functions of k terms under smooth distributions** - *Y. Sakai, E. Takimoto and A. Maruoka* - 1999 |

| **Properties of Language Classes with Finite Elasticity** - *Takashi Moriyama and Masako Sato* - 1993 |

| **Property testing and its connection to learning and approximation** - *Oded Goldreich, Shari Goldwasser and Dana Ron* - 1998 |

| **Proportional k-Interval Discretization for Naive-Bayes Classifiers** - *Ying Yang and Geoffrey I. Webb* - 2001 |

| **Protein folding: symbolic refinement competes with neural networks** - *Susan Craw and Paul Hutton* - 1995 |

| **Protein secondary structure prediction based on stochastic-rule learning** - *Hiroshi Mamitsuka and Kenji Yamanishi* - 1993 |

| **Prototype and feature selection by sampling and random mutation hill climbing algorithms** - *David B. Skalak* - 1994 |

| **Prototype Nonintrusive Appliance Load Monitor** - *G. W. Hart* - September 1985 |

| **Prototype selection using competitive learning** - *Michael Lemmon* - 1994 |

| **Proving based on similarity** - *K. Fujita and M. Harao* - 1992 |

| **Prudence and Other Conditions on Formal Language Learning** - *M. A. Fulk* - 1990 |

| **Prudence in Language Learning** - *S. A. Kurtz and J. S. Royer* - 1988 |

| **Prudence in Vacillatory Language Identification** - *S. Jain and A. Sharma* - 1995 |

| **Pruning adaptive boosting** - *Dragos D. Margineantu and Thomas G. Dietterich* - 1997 |

| **Pruning Algorithms for Rule Learning** - *Fürnkranz Johannes* - 1997 |

| **Pseudo-convergent Q-Learning by Competitive Pricebots** - *Jeffrey O. Kephart and Gerald J. Tesauro* - 2000 |

| **P-sufficient statistics for PAC learning k-term-DNF formulas through enumeration** - *B. Apolloni and C. Gentile* - 2000 |

| **A PTAS for Clustering in Metric Spaces** - *Piotr Indyk* - 1999 |

| **Purposive Behavior Acquisition for a Real Robot by Vision-Based Reinforcement Learning** - *Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida and Koh Hosoda* - 1996 |