| **GA-based learning of context-free grammars using tabular representations** - *Yasubumi Sakakibara and Mitsuhiro Kondo* - 1999 |

| **Gaining degrees of freedom in subsymbolic learning** - *B. Apolloni and D. Malchiodi* - 2001 |

| **Gambling in a rigged casino: the adversarial multi-armed bandit problem** - *Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund and Robert E. Schapire* - 1995 |

| **A game of prediction with expert advice** - *V. Vovk* - 1998 |

| **A game of prediction with expert advice** - *V. G. Vovk* - 1995 |

| **Game theory, on-line prediction and boosting** - *Yoav Freund and Robert E. Schapire* - 1996 |

| **General and Efficient Multisplitting of Numerical Attributes** - *Tapio Elomaa and Juho Rousu* - 1999 |

| **General Bounds for Predictive Errors in Supervised Learning** - *Manfred Opper and David Haussler* - 1995 |

| **General bounds on statistical query learning and PAC learning with noise via hypothesis boosting** - *Javed A. Aslam and Scott E. Decatur* - 1993 |

| **General bounds on the mutual information between a parameter and n conditionally independent observations** - *David Haussler and Manfred Opper* - 1995 |

| **General bounds on the number of examples needed for learning probabilistic concepts** - *Hans Ulrich Simon* - 1996 |

| **General Convergence Results for Linear Discriminant Updates** - *Adam J. Grove, Nick Littlestone and Dale Schuurmans* - 2001 |

| **General Convergence Results for Linear Discriminant Updates** - *Adam J. Grove, Nick Littlestone and Dale Schuurmans* - 1997 |

| **A General Dimension for Approximately Learning Boolean Functions** - *Johannes Köbler and Wolfgang Lindner* - 2002 |

| **A General Dimension for Exact Learning** - *José L. Balcáazar, Jorge Castro and David Guijarro* - 2001 |

| **A General Framework for Induction and a Study of Selective Induction** - *Larry Rendell* - 1986 |

| **A General Framework for Parallel Distributed Processing** - *D. E. Rumelhart, G. E. Hinton and J. L. McClelland* - 1986 |

| **A General Incremental Algorithm that Infers Theory from Facts** - *E. Shapiro* - 1981 |

| **General Inductive Inference Types Based on Linearly-Ordered Sets** - *Andris Ambainis, Rīsiņs Freivalds and Carl H. Smith* - 1996 |

| **Generalisation Error Bounds for Sparse Linear Classifiers** - *Thore Graepel, Ralf Herbrich and John Shawe-Taylor* - 2000 |

| **Generalization and specialization strategies for learning r.e. languages** - *Sanjay Jain and Arun Sharma* - 1998 |

| **Generalization as search** - *T. M. Mitchell* - 1982 |

| **Generalization Bounds for Decision Trees** - *Yishay Mansour and David McAllester* - 2000 |

| **Generalization Error of Linear Neural Networks in Unidentifiable Cases** - *Kenji Fukumizu* - 1999 |

| **Generalization in partially connected layered neural networks** - *K. H. Kwon, K. Kang and J. H. Oh* - 1994 |

| **Generalization of Clauses Relative to a Theory** - *Peter Idestam-Almquist* - 1997 |

| **A generalization of Sauer's Lemma** - *D. Haussler and P. Long* - 1995 |

| **Generalization of the PAC-model for learning with partial information** - *Joel Ratsaby and Vitaly Maiorov* - 1997 |

| **Generalizations in Typed Equational Programming and Their Application to Learning Functions** - *A. Ishino and A. Yamamoto* - 1997 |

| **Generalization under Implication by using Or-Introduction** - *Peter Idestam-Almquist* - 1993 |

| **Generalization versus classification** - *R. Wiehagen and C. H. Smith* - 1992 |

| **Generalized Average-Case Analyses of the Nearest Neighbor Algorithm** - *Seishi Okamoto and Nobuhiro Yugami* - 2000 |

| **A Generalized Kalman Filter for Fixed Point Approximation and Efficient Temporal-Difference Learning** - *David Choi and Benjamin Van Roy* - 2001 |

| **Generalized Notions of Mind Change Complexity** - *Arun Sharma, Frank Stephan and Yuri Ventsov* - 1997 |

| **A generalized reinforcement-learning model: Convergence and applications** - *Michael L. Littman and Csaba Szepesvári* - 1996 |

| **A Generalized Representer Theorem** - *Bernhard Schölkopf, Ralf Herbrich and Alex J. Smola* - 2001 |

| **Generalized stochastic complexity and its applications to learning** - *Kenji Yamanishi* - 1994 |

| **Generalized teaching dimensions and the query complexity of learning** - *Tibor Hegedüs* - 1995 |

| **Generalized Unification as Background Knowledge in Learning Logic Programs** - *Akihiro Yamamoto* - 1993 |

| **Generalizing the PAC Model for Neural Net and Other Learning Applications** - *D. Haussler* - September 1989 |

| **Generalizing the PAC model: sample size bounds from metric dimension-based uniform convergence results** - *D. Haussler* - 1989 |

| **Generalizing version spaces** - *Haym Hirsh* - 1994 |

| **General Linear Relations among Different Types of Predictive Complexity** - *Yuri Kalnishkan* - 1999 |

| **General Loss Bounds for Universal Sequence Prediction** - *Marcus Hutter* - 2001 |

| **A general lower bound on the number of examples needed for learning** - *A. Ehrenfeucht, D. Haussler, M. Kearns and L. Valiant* - 1989 |

| **A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering** - *Pedro Domingos and Geoff Hulten* - 2001 |

| **A General Selection Criterion for Inductive Inference** - *M. P. Georgeff and C. S. Wallace* - 1984 |

| **A General Theory of Discrimination Learning** - *P. Langley* - 1986 |

| **The generate, test, and explain discovery system architecture** - *Michael de la Maza* - 1994 |

| **Generating accurate rule sets without global optimization** - *Eibe Frank and Ian H. Witten* - 1998 |

| **Generating all Maximal Independent Sets of Bounded-degree Hypergraphs** - *Nina Mishra and Leonard Pitt* - 1997 |

| **Gene Selection for Cancer Classification using Support Vector Machines** - *Isabelle Guyon, Jason Weston, Stephen Barnhill and Vladimir Vapnik* - 2002 |

| **Genetic AI-Translating Piaget into Lisp** - *G. L. Drescher* - February 1986 |

| **Genetic Algorithms and Machine Learning** - *D. E. Goldberg and J. H. Holland* - 1988 |

| **Genetic algorithms and machine learning** - *J. Grefenstette* - 1993 |

| **Genetic Algorithms for Protein Tertiary Structure Prediction** - *Steffen Schulze-Kreme* - 1993 |

| **Genetic Algorithms in Noisy Environments** - *J. Michael Fitzpatrick and John J. Grefenstette* - 1988 |

| **Genetic Algorithms in Search, Optimization, and Machine Learning** - *D. E. Goldberg* - 1989 |

| **Genetic Algorithms, Operators, and DNA Fragment Assembly** - *Rebecca J. Parsons, Stephanie Forrest and Christian Burks* - 1995 |

| **Genetic fitness optimization using rapidly mixing Markov chains** - *Paul Vitányi* - 1996 |

| **Genetic programming and deductive-inductive learning: a multi-strategy approach** - *Ricardo Aler, Daniel Borrajo and Pedro Isasi* - 1998 |

| **Genetic Reinforcement Learning for Neurocontrol Problems** - *D. Whitley, S. Dominic, R. Das and C. W. Anderson* - 1993 |

| **Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition** - *T. M. Cover* - 1965 |

| **Geometrical concept learning and convex polytopes** - *T. Hegedüs* - 1994 |

| **A Geometric Approach to Leveraging Weak Learners** - *Nigel Duffy and David P. Helmbold* - 1999 |

| **A geometric approach to leveraging weak learners** - *Nigel Duffy and David Helmbold* - 2002 |

| **A geometric approach to threshold circuit complexity** - *V. Roychowdhury, K. Siu, A. Orlitsky and T. Kailath* - 1991 |

| **Geometric Bounds for Generalization in Boosting** - *Shie Mannor and Ron Meir* - 2001 |

| **Geometric Methods in the Analysis of Glivenko-Cantelli Classes** - *Shahar Mendelson* - 2001 |

| **Geometric Parameters of Kernel Machines** - *Shahar Mendelson* - 2002 |

| **Geometric Properties of Naive Bayes in Nominal Domains** - *Huajie Zhang and Charles X. Ling* - 2001 |

| **Getting Order Independence in Incremental Learning** - *Antoine Cornuéjols* - 1993 |

| **Getting the most from flawed theories** - *Moshe Koppel, Alberto Maria Segre and Ronen Feldman* - 1994 |

| **A Good Oracle Is Hard to Beat** - *Douglas A. Cenzer and William R. Moser* - 1998 |

| **Graded State Machines: The Representation of Temporal Contingencies in Simple Recurrent Networks** - *David Servan-Schreiber, Axel Cleeremans and James L. Mcclelland* - 1991 |

| **Grammar enumeration and inference** - *R. M. Wharton* - 1977 |

| **Grammar Model and Grammar Induction in the System NL PAGE** - *Vlado Kešelj* - 1998 |

| **Grammatical complexity and inference** - *J. A. Feldman and S. Reder* - 1969 |

| **Grammatical inference by hill-climbing** - *C. M. Cook, A. Rosenfeld and A. R. Aronson* - 1976 |

| **Grammatical inference for even linear languages based on control sets** - *Yuji Takada* - 1988 |

| **Grammatical inference in document recognition** - *Alexander S. Saidi and Souad Tayeb-bey* - 1998 |

| **Grammatical Inference: Introduction and Survey - Part 1** - *K. Fu and T. L. Booth* - January 1975 |

| **Grammatical Inference: Introduction and Survey - Part 2** - *K. Fu and T. L. Booth* - July 1975 |

| **Grammatical inference using tabu search** - *Jean-Yves Giordano* - 1996 |

| **Graph learning with a nearest neighbor approach** - *Sven Koenig and Yury Smirnov* - 1996 |

| **GRAPHOIDS: A Graph-Based Logic for Reasoning about Relevance Relations, or When would x tell you more about y if you already know z** - *J. Pearl and A. Paz* - December 1985 |

| **Greedy attribute selection** - *Rich Caruana and Dayne Freitag* - 1994 |

| **A greedy method for learning ***mu*-DNF functions under the uniforn distribution - *G. Pagallo and D. Haussler* - 1989 |

| **Guest Editorial** - *Katharina Morik, Francesco Bergadano and Wray Buntine* - 1994 |

| **Guest editor's foreword** - *Robert E. Schapire* - 1998 |

| **Guest Editors' Introduction** - *Philip K. Chan, Salvatore J. Stolfo and David Wolpert* - 1999 |

| **Guest Editor's Introduction** - *Lisa Hellerstein* - 1994 |

| **Guest Editor's Introduction** - *Sally A. Goldman* - 1995 |

| **Guest Editors' Introduction** - *Stephen Muggleton and David Page* - 1997 |

| **Guest Editor's Introduction** - *Jyrki Kivinen* - 2002 |

| **Guest Editor's Introduction** - *Philip M. Long* - 1997 |

| **Guest Editor's Introduction** - *Michael J. Pazzani* - 1994 |

| **Guest Editors' Introduction** - *Yoram Singer* - 2001 |

| **Guest Editor's Introduction** - *Thomas Hancock* - 1996 |

| **Guest Editors' Introduction** - *Jonathan Baxter and Nicolò Cesa-Bianchi* - 1999 |

| **Guest Editors' Introduction: Machine Learning and Natural Language** - *Claire Cardie and Raymond J. Mooney* - 1999 |

| **Guest Introduction: Special Issue on New Methods for Model Selection and Model Combination** - *Yoshua Bengio and Dale Schuurmans* - 2002 |

| **A Guided Tour Across the Boundaries of Learning Recursive Languages** - *T. Zeugmann and S. Lange* - 1995 |

| **A guided tour of Chernov bounds** - *T. Hagerup and C. Rub* - 1990 |

| **A Guided Tour of Finite Mixture Models: from Pearson to the Web** - *Padhraic Smyth* - 2001 |