| **Natural properties of strategies identifying recursive functions** - *K. P. Jantke* - 1979 |

| **Navigating in Unfamiliar Geometric Terrain** - *A. Blum, P. Raghavan and B. Schieber* - 1991 |

| **A Nearest Hyperrectangle Learning Method** - *Steven Salzberg* - 1991 |

| **Nearest Neighbor Pattern Classification** - *T. M. Cover and P. E. Hart* - January 1967 |

| **Nearly tight bounds on the learnability of evolution** - *Andris Ambainis, Richard Desper, Martin Farach and Sampath Kannan* - 1997 |

| **Near-Optimal Reinforcement Learning in Polynomial Time** - *Michael Kearns and Satinder Singh* - 2002 |

| **Near-optimal reinforcement learning in polynomial time** - *Michael Kearns and Satinder Singh* - 1998 |

| **A Necessary Condition for Learning from Positive Examples** - *Haim Shvaytser* - 1990 |

| **The need for biases in learning generalizations** - *T. M. Mitchell* - 1980 |

| **A Negative Result on Inductive Inference of Extended Pattern Languages** - *Daniel Reidenbach* - 2002 |

| **Negative results for equivalence queries** - *D. Angluin* - 1990 |

| **Negative robust learning results for Horn clause programs** - *Pascal Jappy, Richard Nock and Olivier Gascuel* - 1996 |

| **Networks and the Best Approximation Property** - *T. Poggio and F. Girosi* - October 1989 |

| **Neural circuits for pattern recognition with small total wire length** - *Robert A. Legenstein and Wolfgang Maass* - 2002 |

| **Neural Darwinism - The Theory of Neuronal Group Selection** - *G. M. Edelman* - 1987 |

| **Neural Discriminant Analysis** - *Jorge Ricardo Cuellar and Hans Ulrich Simon* - 1993 |

| **Neural net algorithms that learn in polynomial time from examples and queries** - *E. Baum* - 1991 |

| **Neural Network-Based Vision for Precise Control of a Walking Robot** - *Dean A. Pomerleau* - 1994 |

| **Neural Network Design and the Complexity of Learning** - *J. S. Judd* - 1990 |

| **Neural Network Design and the Complexity of Learning** - *Vasant Honavar* - 1992 |

| **Neural Network Learning: Effects of Network and Training Set Size** - *N. Perugini* - June 1989 |

| **The Neural Network Loading Problem is Undecidable** - *H. Wiklicky* - 1994 |

| **A neural network model for prognostic prediction** - *W. Nick Street* - 1998 |

| **Neural network modeling of physiological processes** - *Volker Tresp, John Moody and Wolf-Rüdiger Delong* - 1994 |

| **Neural Networks: a Comprehensive Foundation** - *S. Haykin* - 1994 |

| **Neural networks and efficient associative memory** - *Matthias Miltrup and Georg Schnitger* - 1998 |

| **Neural networks and physical systems with emergent collective computational abilities** - *J. J. Hopfield* - April 1982 |

| **Neural networks for full-scale protein sequence classification: sequence encoding with singular value decomposition** - *Cathy Wu, Michael Berry, Sailaja Shivakumar and Jerry McLarty* - 1995 |

| **Neural Networks for Full-Scale Protein Sequence Classification: Sequence Encoding with Singular Value Decomposition** - *Cathy Wu, Michael Berry and Sailaja Shivakumar* - 1995 |

| **Neural Networks in Mathematica** - *J. A. Freeman* - November 1992 |

| **Neural networks, principle components, and subspaces** - *E. Oja* - 1989 |

| **A `Neural' Network that Learns to Play Backgammon** - *G. Tesauro and T. J. Sejnowski* - July 1989 |

| **Neurocomputing: Foundations of Research** - *J. A. Anderson and E. Rosenfeld* - 1988 |

| **Neurogammon: A Neural-Network Backgammon Program** - *G. Tesauro* - March 1990 |

| **A Neuroidal Model for Cognitive Functions** - *L. Valiant* - 1994 |

| **A New Algorithm for Automatic Configuration of Hidden Markov Models** - *Makoto Iwayama, Nitin Indurkhya and Hiroshi Motoda* - 1993 |

| **A New Approach to Unsupervised Learning in Deterministic Environments** - *R. L. Rivest and R. E. Schapire* - June 1987 |

| **A New Approach to Unsupervised Learning in Deterministic Environments (reprint)** - *R. L. Rivest and R. E. Schapire* - 1990 |

| **New Error Bounds for Solomonoff Prediction** - *Marcus Hutter* - 2001 |

| **A New Framework for Discovering Knowledge from Two-Dimensional Structured Data Using Layout Formal Graph System** - *Tomoyuki Uchida, Yuko Itokawa, Takayoshi Shoudai, Tetsuhiro Miyahara and Yasuaki Nakamura* - 2000 |

| **A new heuristic for inferring regular grammars** - *S. Y. Itoga* - 1981 |

| **New Lower Bounds for Statistical Query Learning** - *Ke Yang* - 2002 |

| **A new method for predicting protein secondary structures based on stochastic tree grammars** - *Naoki Abe and Hiroshi Mamitsuka* - 1994 |

| **A New Model for Inductive Inference** - *R. L. Rivest and R. Sloan* - March 1988 |

| **A New Nonparametric Pairwise Clustering Algorithm Based on Iterative Estimation of Distance Profiles** - *Shlomo Dubnov, Ran El-Yaniv, Yoram Gdalyahu, Elad Schneidman, Naftali Tishby and Golan Yona* - 2002 |

| **NewsWeeder: learning to filter netnews** - *Ken Lang* - 1995 |

| **New Theoretical Directions in Machine Learning** - *D. Haussler* - 1988 |

| **A new view of the EM algorithm that justifies incremental, sparse and other variants** - *R. M. Neal and G. E. Hinton* - 1998 |

| **N-Learners Problem: Fusion of Concepts** - *N. S. V. Rao, E. M. Oblow, C. W. Glover and G. E. Liepins* - September 1991 |

| **N-learners problem: system of PAC learners** - *Nageswara S. V. Rao and E. M. Oblow* - 1997 |

| **Noise elimination in inductive concept learning: a case study in medical diagnosis** - *Dragan Gamberger, Nada Lavrač and Sašo Dzeroski* - 1996 |

| **A noise model on learning sets of strings** - *Y. Sakakibara and R. Siromoney* - 1992 |

| **Noise-tolerant distribution-free learning of general geometric concepts** - *Nader H. Bshouty, Sally A. Goldman, H. David Mathias, Subhash Suri and Hisao Tamaki* - 1998 |

| **Noise-Tolerant Distribution-Free Learning of General Geometric Concepts** - *N. H. Bshouty, S. A. Goldman, H. D. Mathias, S. Suri and H. Tamaki* - 1996 |

| **Noise-tolerant Efficient Inductive Synthesis of Regular Expressions from Good Examples** - *A. Brāzma and Čerāns* - 1997 |

| **Noise-tolerant learning, the parity problem, and the statistical query model** - *Avrim Blum, Adam Kalai and Hal Wasserman* - 2000 |

| **Noise-Tolerant Occam Algorithms and Their Applications to Learning Decision Trees** - *Yasubumi Sakakibara* - 1993 |

| **Noise-tolerant parallel learning of geometric concepts** - *Nader H. Bshouty, Sally A. Goldman and David H. Mathias* - 1995 |

| **Noise-tolerant recursive best-first induction** - *Uroš Pompe* - 1999 |

| **Noisy inference and oracles** - *Frank Stephan* - 1997 |

| **Noisy Time Series Prediction using Recurrent Neural Networks and Grammatical Inference** - *C. Lee Giles, Steve Lawrence and Ah Chung Tsoi* - 2001 |

| **A Non-Iterative Maximum Entropy Algorithm** - *S. A. Goldman and R. L. Rivest* - 1988 |

| **Non-learnable classes of Boolean formulae that are closed under variable permutation** - *H. Shvaytser* - 1988 |

| **Non-linear decision trees - NDT** - *Andreas Ittner and Michael Schlosser* - 1996 |

| **Nonlinear Function Learning and Classification Using Optimal Radial Basis Function Networks** - *Adam Krzyżak* - 2001 |

| **Non-linear Inequalities between Predictive and Kolmogorov Complexities** - *Michael V. Vyugin and Vladimir V. V'yugin* - 2001 |

| **Non mean square error criteria for the training of learning machines** - *Marco Saerens* - 1996 |

| **Nonmonotonic Reasoning: Logical Foundations of Commonsense** - *G. Brewka* - 1991 |

| **A Nonparametric Approach to Noisy and Costly Optimization** - *Brigham S. Anderson, Andrew W. Moore and David Cohn* - 2000 |

| **Nonparametric Regularization of Decision Trees** - *Tobias Scheffer* - 2000 |

| **Nonparametric statistical methods for experimental evaluations of speedup learning** - *Geoffrey J. Gordon and Alberto Maria Segre* - 1996 |

| **Nonparametric Time Series Prediction Through Adaptive Model Selection** - *Ron Meir* - 2000 |

| **Nonuniform Learnability** - *G. M. Benedek and A. Itai* - July 1988 |

| **Nonuniform learnability** - *Gyora M. Benedek and Alon Itai* - 1994 |

| **A Normative Examination of Ensemble Learning Algorithms** - *David M. Pennock, Pedrito Maynard-Reid II, C. Lee Giles and Eric Horvitz* - 2000 |

| **Note on a Central Lemma of Learning Theory** - *D. Osherson, M. Stob and S. Weinstein* - 1983 |

| **A note on a scale-sensitive dimension of linear bounded functionals in Banach spaces** - *Leonid Gurvits* - 2001 |

| **A note on a scale-sensitive dimension of linear bounded functionals in Banach spaces** - *Leonid Gurvits* - 1997 |

| **A note on batch and incremental learnability** - *Arun Sharma* - 1998 |

| **A Note on Formal Learning Theory** - *D. Osherson and S. Weinstein* - 1982 |

| **A note on grammatical inference of slender context-free languages** - *Yuji Takada and Taishin Y. Nishida* - 1996 |

| **A note on inductive generalization** - *G. D. Plotkin* - 1970 |

| **A Note on Learning DNF Formulas Using Equivalence and Incomplete Membership Queries** - *Zhixiang Chen* - 1994 |

| **A note on learning from multiple-instance examples** - *Avrim Blum and Adam Kalai* - 1998 |

| **A note on learning multivariate polynomials under the uniform distribution** - *Nader H. Bshouty* - 1995 |

| **A note on Limit Identification of c-minimal Indices** - *E. B. Kinber* - 1983 |

| **A Note on Polynomial-Time Inference of k-Variable Pattern Language** - *S. Lange* - 1990 |

| **A Note on Refinement Operators** - *Tim Niblett* - 1993 |

| **A Note on Support Vector Machine Degeneracy** - *Ryan Rifkin, Massimiliano Pontil and Alessandro Verri* - 1999 |

| **A Note on the Generalization Performance of Kernel Classifiers with Margin** - *Theodoros Evgeniou and Massimiliano Pontil* - 2000 |

| **A note on the k-tail method of tree grammar inference** - *J. M. Brayer and K. S. Fu* - 1977 |

| **A note on the number of queries needed to identify regular languages** - *D. Angluin* - 1982 |

| **A note on the Pattern-finding Problem** - *C. Hua and K. Ko* - 1984 |

| **A note on the query complexity of learning DFA** - *José L. Balcázar, Josep Díaz, Ricard Gavaldà and Osamu Watanabe* - 1993 |

| **A note on the self-consistency of definitions of generalization and inductive inference** - *Henry P. Kramer* - 1962 |

| **A note on the use of probabilities by mechanical learners** - *Eric Martin and Daniel Osherson* - 1995 |

| **A note on VC-dimension and measure of sets of reals** - *Shai Ben-David and Leonid Gurvits* - 1995 |

| **Notes on the PAC learning of geometric concepts with additional information** - *Ken-ichiro Kakihara and Hiroshi Imai* - 1993 |

| **Not-so-nearly-minimal-size program inference** - *John Case, Mandayam Suraj and Sanjay Jain* - 1995 |