| **L. R. C. K. Dietterich, T** -- *Learning and inductive inference* - 1982 |

| **Ladner, Richard** -- *Improving generalization with active learning* - 1994 |

| **Laer, Wim Van** -- *Inductive constraint logic* - 1995 |

| **Lai, T.** -- *An interactive knowledge transfer model and analysis of Mastermind game* - 1992 |

| **Laird, P.** |

| **Laird, Philip** |

| **Laird, J.** -- *Towards Chunking as a General Learning Mechanism* - August 1984 |

| **Laird, J. E.** -- *SOAR: An architecture for General Intelligence* - September 1987 |

| **Laird, John E.** -- *Chunking in Soar: The Anatomy of a General Learning Mechanism* - 1986 |

| **Laird, N. M.** -- *Maximum-likelihood from Incomplete Data via the EM Algorithm* - 1977 |

| **Laird, P. D.** -- *Efficient unsupervised learning* - 1988 |

| **Laird, Philip D.** -- *Learning from Good and Bad Data* - 1988 |

| **Lang, K. J.** |

| **Lang, Ken** -- *NewsWeeder: learning to filter netnews* - 1995 |

| **Lang, Kevin J.** -- *Hill climbing beats genetic search on a Boolean circuit problem of Koza’s* - 1995 |

| **Lange, S.** |

| **Langley, P.** |

| **Langley, Pat** |

| **Lapedes, Alan S.** -- *Use of Adaptive Networks to Define Highly Predictable Protein Secondary-Structure Classes* - 1995 |

| **Lapointe, Stephanie** -- *Learning recursive relations with randomly selected small training sets* - 1994 |

| **Lathrop, R. H.** -- *Efficient Methods for Massively Parallel Symbolic Induction: Algorithms and Implementation* - June 1990 |

| **Lathrop, Richard H.** -- *On the learnability of the uncomputable* - 1996 |

| **Lavin, Victor** |

| **Lavrac, N.** -- *Review of Five Empirical Learning Systems Within a Proposed Schemata* - May 1987 |

| **Lavrac, Nada** -- *A Reply to Pazzani’s Book Review of Inductive Logic Programming: Techniques and Applications* - 1996 |

| **Lavín, Victor** -- *The query complexity of learning some subclasses of context-free grammars* - 1995 |

| **learn?, How many queries are needed to** -- *Hellerstein, Lisa and Pillaipakkamnatt, Krishnan and Raghavan, Vijay and Wilkins, Dawn* - 1995 |

| **Lebiere, C.** -- *The Cascade-Correlation Learning Architecture* - 1990 |

| **Lebowitz, Michael** -- *Experiments with Incremental Concept Formation: UNIMEM* - 1987 |

| **LeCun, Yann** -- *Boosting and other machine learning algorithms* - 1994 |

| **Lee, K.** |

| **Lee, Wee Sun** |

| **Lee, Y. C.** |

| **Lee, Andrew C. Y.** -- *Inferring Answers to Queries* - 1997 |

| **Lee, D.** -- *Testing finite state machines* - 1991 |

| **Lee, Mary S.** -- *Efficient algorithms for minimizing cross validation error* - 1994 |

| **Lee, W. S.** -- *Lower bounds on the VC-dimension of smoothly parametrized function classes* - 1994 |

| **Leiserson, C. E.** -- *Introduction to Algorithms* - 1990 |

| **Lenat, Douglas B.** -- *When Will Machines Learn?* - 1989 |

| **Leung, H. C.** -- *The Use of Artificial Neural Networks for Phonetic Recognition* - May 1989 |

| **Levin, E.** |

| **Levine, B.** |

| **Levine, R. D.** -- *Consistent Inference of Probabilities for Reproducible Experiments* - 1984 |

| **Levinson, S. E.** |

| **Levitan, S. P.** -- *Predicting multiprocessor memory access patterns with learning models* - 1997 |

| **Lewis, David D.** |

| **Li, Hang** |

| **Li, M.** |

| **Li, Ming** |

| **Li, Shigang** -- *A Bayesian approach to model learning in non-Markovian environments* - 1997 |

| **Liang, Lin** -- *Comprehension Grammars Generated from Machine Learning of Natural Languages* - 1995 |

| **Lichten, L.** -- *The use of grammatical inference for designing programming languages* - 1973 |

| **Liepe, W.** |

| **Liepins, G. E.** -- *N-Learners Problem: Fusion of Concepts* - September 1991 |

| **Lin, J.** |

| **Lin, J-H.** -- *Complexity results on learning by neural networks* - 1991 |

| **Lin, Jyh-Han** -- *A Theory for Memory-Based Learning* - 1994 |

| **Lin, L.** -- *Self-improving reactive agents: case studies of Reinforcement Learning Frameworks* - August 1990 |

| **Lin, Long-ji** -- *Self-Improving Reactive Agents Based On Reinforcement Learning, Planning and Teaching* - 1992 |

| **Lincoln, N.** -- *Synergy of clustering multiple backpropagation networks* - 1989 |

| **Lindenbaum, M.** -- *Localization vs. identification of semi-algebraic sets* - 1993 |

| **Lindenbaum, Michael** -- *Learning distributions by their density levels - a paradigm for learning without a teacher* - 1995 |

| **Linder, Tamás** -- *A minimax lower bound for empirical quantizer design* - 1997 |

| **Lindner, R.** -- *Algorithmische Erkennung* - 1972 |

| **Ling, Charles X.** |

| **Linial, N.** |

| **Lippmann, R. P.** -- *An Introduction to Computing with Neural Nets* - April 1987 |

| **Lipton, R.** -- *Amplification of weak learning under the uniform distribution* - 1993 |

| **Lipton, R. J.** -- *Reconstructing algebraic functions from mixed data* - 1992 |

| **Littlestone, N.** |

| **Littlestone, Nick** |

| **Littman, Michael L.** |

| **Liu, Huan** -- *A probabilistic approach to feature selection - a filter solution* - 1996 |

| **Liu, W. Z.** -- *The Importance of Attribute Selection Measures in Decision Tree Induction* - 1994 |

| **Liu, Wei Zhong** -- *Bias in Information-Based Measures in Decision Tree Induction* - 1994 |

| **Long, P.** |

| **Long, P. M.** |

| **Long, Philip M.** |

| **Lubinsky, David J.** -- *Increasing the performance and consistency of classification trees by using the accuracy criterion at the leaves* - 1995 |

| **Luenberger, D. G.** -- *Linear and Nonlinear Programming* - 1984 |

| **Lugosi, Gábor** |

| **Lynes, C.** |

| **Lübbe, Marcus** -- *An efficient subsumption algorithm for inductive logic programming* - 1994 |