| **Back Propagation Fails to Separate Where Perceptrons Succeed** - *M. L. Brady, R. Raghavan and J. Slawny* - May 1989 |

| **Back Propagation Separates Where Perceptrons Do** - *E. D. Sontag and H. J. Sussmann* - 1991 |

| **Background knowledge in GA-based concept learning** - *Jukka Hekanaho* - 1996 |

| **Backpropagation Can Give Rise to Spurious Local Minima Even for Networks without Hidden Layers** - *E. D. Sontag and H. J. Sussmann* - February 1989 |

| **Balanced Cooperative Modeling** - *Katharina Morik* - 1993 |

| **Bayes Decision Methods** - *J. Pearl* - June 1985 |

| **A Bayesian analysis of algorithms for learning finite functions** - *James Cussens* - 1995 |

| **A Bayesian approach to model learning in non-Markovian environments** - *Nobuo Suematsu, Akira Hayashi and Shigang Li* - 1997 |

| **A Bayesian framework to integrate symbolic and neural learning** - *Irina Tchoumatchenko and Jean-Gabriel Ganascia* - 1994 |

| **Bayesian inductive logic programming** - *S. Muggleton* - 1994 |

| **A Bayesian Method for the Induction of Probabilistic Networks from Data** - *Gregory F. Cooper and Edward Herskovits* - 1992 |

| **Bayesian Methods for Adaptive Models** - *D. MacKay* - 1992 |

| **Bayesian Networks: A Model of Self-Activated Memory for Evidential Reasoning** - *J. Pearl* - June 1985 |

| **Bayesian Training of Backpropagation Networks by the Hybrid Monte Carlo Method** - *R. M. Neal* - April 1992 |

| **A Bayesian/information theoretic model of bias learning** - *Jonathan Baxter* - 1996 |

| **Behavior of sequential predictors of binary sequences** - *T. Cover* - 1965 |

| **Being taught can be faster than asking questions** - *Ronald L. Rivest and Yiqun L. Yin* - 1995 |

| **BELLMAN STRIKES AGAIN! The growth rate of sample complexity with dimension for the nearest neighbor classifier** - *S. S. Venkatesh, R. R. Snapp and D. Psaltis* - 1992 |

| **BEXA: A Covering Algorithm for Learning Propositional Concept Descriptions** - *Hendrik Theron and Ian Cloete* - 1996 |

| **Beyond independence: conditions for the optimality of the simple Bayesian classifier** - *Pedro Domingos and Michael Pazzani* - 1996 |

| **Bias in Information-Based Measures in Decision Tree Induction** - *Allan P. White and Wei Zhong Liu* - 1994 |

| **Bias plus variance decomposition for zero-one loss functions** - *Ron Kohavi and David H. Wolpert* - 1996 |

| **Bias, Version Spaces, and Valiant’s Learning Framework** - *D. Haussler* - June 1987 |

| **The Binary Exponentiated Gradient Algorithm for Learning Linear Functions** - *Tom Bylander* - 1997 |

| **Bivariate Scientific Function Finding in a Sampled, Real-Data Testbed** - *Cullen Schaffer* - 1993 |

| **Boltzmann Machines: Constraint Satisfaction Networks that Learn** - *G. E. Hinton, T. J. Sejnowski and D. H. Ackley* - May 1984 |

| **Book Review** - *Roland J. Zito-Wolf* - 1991 |

| **Book Review: C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993.** - *Steven L. Salzberg* - 1994 |

| **Book review: inductive logic programming: techniques and applications** - *Michael Pazzani* - 1996 |

| **Book Review: Neural Network Perception for Mobile Robot Guidance by Dean A. Pomerleau. Kluwer Academic Publishers, 1993.** - *Geoffrey Towell* - 1995 |

| **A Boolean Complete Neural Model of Adaptive Behavior** - *S. Hampson and D. Kibler* - 1983 |

| **Boolean Feature Discovery in Empirical Learning** - *Giulia Pagallo and David Haussler* - 1990 |

| **Boosting a Weak Learning Algorithm by Majority** - *Y. Freund* - September 1995 |

| **Boosting and other machine learning algorithms** - *Harris Drucker, Corinna Cortes, L. D. Jackel, Yann LeCun and Vladimir Vapnik* - 1994 |

| **Boosting the margin: a new explanation for the effectiveness of voting methods** - *Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee* - 1997 |

| **Bounded degree graph inference from walks** - *Vijay Raghavan* - 1994 |

| **The bounded injury priority method and the learnability of unions of rectangles** - *Z. Chen and S. Homer* - May 1994 |

| **Bounding sample size with the Vapnik-Chervonenkis dimension** - *J. Shawe-Taylor, M. Anthony and R. L. Biggs* - 1989 |

| **Bounding the Vapnik-Chervonenkis dimension of concept classes parametrized by real numbers** - *Paul W. Goldberg and Mark R. Jerrum* - 1995 |

| **Bounding VC-dimension for neural networks: progress and prospects** - *Marek Karpinski and Angus Macintyre* - 1995 |

| **Bounds for Predictive Errors in the Statistical Mechanics of in Supervised Learning** - *Manfred Opper and David Haussler* - 1995 |

| **Bounds for the computational power and learning complexity of analog neural nets** - *W. Maass* - 1993 |

| **Bounds on approximate steepest descent for likelihood maximization in exponential families** - *N. Cesa-Bianchi, A. Krogh and M. K. Warmuth* - July 1994 |

| **Bounds on the classification error of the nearest neighbor rule** - *John A. Drakopoulos* - 1995 |

| **Bounds on the Number of Examples needed for Learning Functions** - *H. U. Simon* - 1994 |

| **Bounds on the sample complexity of Bayesian learning using information theory and the VC dimension** - *David Haussler, Michael Kearns and Robert E. Schapire* - 1994 |

| **A branch and bound conceptual clusterer** - *Arthur J. Nevins* - 1995 |

| **A Branch and Bound Incremental Conceptual Clusterer** - *Arthur J. Nevins* - 1995 |

| **Breaking the Probability 1/2 Barrier in FIN-type Learning** - *R. Daley, B. Kalyanasundaram and M. Velauthapillai* - 1995 |

| **A brief look at some machine learning problems in genomics** - *David Haussler* - 1997 |