| **Machine Discovery in the Presence of Incomplete or Ambiguous Data** - *S. Lange and P. Watson* - 1994 |

| **Machine Discovery of Effective Admissible Heuristics** - *Armand E. Prieditis* - 1993 |

| **Machine discovery of protein motifs** - *Darrell Conklin* - 1995 |

| **Machine induction without revolutionary paradigm shifts** - *John Case, Sanjay Jain and Arun Sharma* - 1995 |

| **Machine Inductive Inference and Language Identification** - *J. Case and C. Lynes* - 1982 |

| **Machine Learning** - *R. L. Rivest and W. Remmele* - 1991 |

| **Machine Learning** - *R C. J. Michalski and T. Mitchell* - 1983 |

| **Machine Learning: A Maturing Field** - *Jaime Carbonell* - 1992 |

| **Machine Learning: A Theoretical Approach** - *Lisa Hellerstein* - 1993 |

| **Machine Learning: A Theoretical Approach** - *B. K. Natarajan* - 1991 |

| **Machine Learning: An Artificial Intelligence Approach** - *Y. Kodratoff and R. S. Michalski* - 1990 |

| **Machine Learning: An Artificial Intelligence Approach 1** - *R. S. Michalski and J. G. Carbonell and T. M. Mitchell* - 1983 |

| **Machine Learning: An Artificial Intelligence Approach 2** - *R. S. Michalski and J. G. Carbonell and T. M. Mitchell* - 1986 |

| **Machine Learning and Concept Formation** - *P. Langley* - 1987 |

| **Machine Learning and Discovery** - *Pat Langley and Ryszard S. Michalski* - 1986 |

| **Machine Learning and Grammar Induction** - *P. Langley* - 1987 |

| **Machine Learning and Qualitative Reasoning** - *Ivan Bratko* - 1994 |

| **Machine learning and qualitative reasoning, extended abstract** - *Ivan Bratko* - 1994 |

| **Machine Learning as an Experimental Science** - *P. Langley* - 1988 |

| **Machine learning by function decomposition** - *Blaž Zupan, Marko Bohanec, Ivan Bratko and Janez Demšar* - 1997 |

| **Machine Learning: From Theory to Applications; Cooperative Research at Siemens and MIT** - *S. J. Hanson and W. Remmele* - 1993 |

| **Machine Learning of Higher Order Programs** - *G. Baliga, J. Case, S. Jain and M. Suraj* - 1994 |

| **Machine Learning of Inductive Bias** - *P. E. Utgoff* - 1986 |

| **Machine Learning of Nearly Minimal Size Grammars** - *J. Case and H. Chi* - 1986 |

| **Machine Learning: Paradigms and Methods** - *J. C. Editor* - 1990 |

| **Machine Learning Research at MIT** - *R. L. Rivest and P. Winston* - 1990 |

| **Machine Learning: the Human Connection** - *R. L. Rivest and W. Remmele* - March / April 1988 |

| **A Machine That Learns** - *W. G. Walter* - August 1951 |

| **Made-up Minds: A Constructivist Approach to Artificial Intelligence** - *G. L. Drescher* - September 1989 |

| **Markov decision processes in large state spaces** - *Lawrence K. Saul and Satinder P. Singh* - 1995 |

| **Markov games as a framework for multi-agent reinforcement learning** - *Michael L. Littman* - 1994 |

| **A Markovian extension of Valiant’s learning model** - *D. Aldous and U. Vazirani* - 1990 |

| **Maryanski’s grammatical inferencer** - *B. R. Gaines* - January 1979 |

| **The Mathematical Foundations of Learning Machines** - *N. J. Nilsson* - 1990 |

| **Mathematical learning theory: a formalized, axiomatic, abstract approach** - *R. J. Hendel* - 1979 |

| **Mathematical/Mechanical? Learners pay a price for Bayesianism** - *D. N. Osherson, M. Stob and S. Weinstein* - 1988 |

| **Matters Horn and Other Features in the Computational Learning Theory Landscape: The Notion of Membership** - *M. Frazier* - 1994 |

| **Maximum-likelihood from Incomplete Data via the EM Algorithm** - *A. P. Dempster, N. M. Laird and D. B Rubin* - 1977 |

| **MDL and categorical theories continued** - *J. R. Quinlan* - 1995 |

| **MDL learning of unions of simple pattern languages from positive examples** - *Pekka Kilpeläinen, Heikki Mannila and Esko Ukkonen* - 1995 |

| **A Mean Field Theory Learning Algorithm for Neural Networks** - *C. Peterson and J. R. Anderson* - 1987 |

| **Measurability Constraints on PAC Learnability** - *S. Ben-David and G. M. Benedek* - 1991 |

| **A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations** - *H. Chernoff* - 1952 |

| **A mechanical method of successful ascientific inquiry** - *D. N. Osherson, M. Stob and S. Weinstein* - 1990 |

| **A Mechanism for Early Piagetian Learning** - *G. L. Drescher* - July 1987 |

| **A Method for Inferring Context-Free Grammars** - *B. Knobe and K. Knobe* - 1976 |

| **A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space** - *J. Gordon and E. H. Shortliffe* - July 1985 |

| **A method for obtaining digital signatures and public key cryptosytems** - *R. L. Rivest, A. Shamir and L. Adleman* - 1978 |

| **A Method of Computing Generalized Bayesian Probability Values for Expert Systems** - *P. C. Cheeseman* - August 1983 |

| **A methodology for LISP program construction from examples** - *P. D. Summers* - January 1977 |

| **A metric entropy bound is not sufficient for learnability** - *R. Dudley, S. Kulkarni, T. Richardson and O. Zeituni* - October 1992 |

| **Miminum description length estimators under the optimal coding scheme** - *V. G. Vovk* - 1995 |

| **Minimal Godel numbers and their identification in the limit** - *R. V. Freivalds* - 1975 |

| **A minimax lower bound for empirical quantizer design** - *Peter Bartlett, Tamás Linder and Gábor Lugosi* - 1997 |

| **The minimum consistent DFA problem cannot be approximated within any polynomial** - *L. Pitt and M. Warmuth* - 1993 |

| **Minimum Description Length Principle** - *J. Rissanen* - 1985 |

| **The minimum description length principle and categorical theories** - *J. R. Quinlan* - 1994 |

| **Minimum Information Estimation of Structure** - *G. W. Hart* - April 1987 |

| **The minimum L-complexity algorithm and its applications to learning non-parametric rules** - *K. Yamanishi* - 1994 |

| **Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms** - *N. Littlestone* - 1989 |

| **Mistake bounds of incremental learners when concepts drift with applications to feedforward networks** - *T. Kuh, T. Petsche and R. Rivest* - 1991 |

| **Mixture densities, maximum likelihood, and the EM algorithm** - *R. A. Redner and H. F. Walker* - 1984 |

| **A model of sequence extrapolation** - *P. Laird, S. R and P. Dunning* - 1993 |

| **Modeling By Shortest Data Description** - *J. Rissanen* - 1978 |

| **Modeling Cognitive Development on Balance Scale Phenomena** - *Thomas R. Shultz, Denis Mareschal and William C. Schmidt* - 1994 |

| **Modeling cognitive development on balance-scale phenomena** - *Thomas R. Schultz, Denis Mareschal and William C. Schmidt* - 1994 |

| **Modeling Incremental Learning from Positive Data** - *S. Lange and T. Zeugmann* - 1995 |

| **Models of Goal Seeking and Learning** - *M. Gold* - 1965 |

| **Models of Language Acquisition** - *D. Osherson and S. Weinstein* - 1984 |

| **A modular Q-learning architecture for manipulator task decomposition** - *Chen K. Tham and Richard W. Prager* - 1994 |

| **Monotonic and dual monotonic language learning** - *S. Lange, T. Zeugmann and S. Kapur* - 1996 |

| **Monotonic and dual-monotonic probabilistic language learning of indexed families with high probability** - *Léa Meyer* - 1997 |

| **Monotonic and Non-monotonic Inductive Inference** - *K. P. Jantke* - 1991 |

| **Monotonic and Nonmonotonic Inductive Inference of Functions and Patterns** - *K. P. Jantke* - 1990 |

| **Monotonic language learning** - *S. Kapur* - 1992 |

| **Monotonic Versus Non-monotonic Language Learning** - *S. Lange and T. Zeugmann* - 1993 |

| **Monotonicity maintenance in information-theoretic machine learning algorithms** - *Arie Ben-David* - 1995 |

| **Monotonicity versus efficiency for learning languages from texts** - *E. Kinber* - 1994 |

| **Monte-Carlo Inference and its Relations to Reliable Frequency Identification** - *E. B. Kinber and T. Zeugmann* - 1989 |

| **More or less efficient agnostic learning of convex polygons** - *Paul Fischer* - 1995 |

| **More theorems about scale-sensitive dimensions and learning** - *Peter L. Bartlett and Philip M. Long* - 1995 |

| **Multilevel counterfactuals for generalizations of relational concepts and productions** - *S. A. Vere* - 1980 |

| **Multistrategy Learning and Theory Revision** - *Lorenza Saitta, Marco Botta and Filippo Neri* - 1993 |

| **Multivariate decision trees** - *Carla E. Brodley and Paul E. Utgoff* - 1995 |

| **Mutual Information and Bayes Methods for Learning a Distribution** - *David Haussler and Manfred Opper* - 1995 |

| **Mutual information gaining algorithm and its relation to PAC-learning algorithm** - *E. Takimoto, I. Tajika and A. Maruoka* - 1994 |