| **PAB-decisions for Boolean and real-valued features** - *S. Anoulova, P. Fischer, S. Pölt and H. U. Simon* - 1992 |

| **PAC Adaptive Control of Linear Systems** - *Claude-Nicolas Fiechter* - 1997 |

| **A PAC Analysis of a Bayesian Estimator** - *John Shawe-Taylor and Robert C. Williamson* - 1997 |

| **PAC learning axis-aligned rectangles with respect to product distributions from multiple-instance examples** - *Philip M. Long and Lei Tan* - 1996 |

| **PAC learning intersections of halfspaces with membership queries** - *Stephen Kwek and Leonard Pitt* - 1996 |

| **PAC Learning of One-Dimensional Patterns** - *Paul W. Goldberg, Sally A. Goldman and Stephen D. Scott* - 1996 |

| **PAC learning with constant-partition classification noise and applications to decision tree induction** - *Scott Decatur* - 1997 |

| **PAC learning with generalized samples and an application to stochastic geometry** - *S. R. Kulkarni, S. K. Mitter, J. N. Tsitsiklis and O. Zeitouni* - 1992 |

| **PAC learning with irrelevant attributes** - *Aditi Dhagat and Lisa Hellerstein* - 1994 |

| **PAC-learnability of determinate logic programs** - *S. Duzeroski, S. Muggleton and S. Russell* - 1992 |

| **Pac-Learning a Restricted Class of Recursive Logic Programs** - *William Cohen* - 1993 |

| **PAC-like upper bounds for the sample complexity of leave-one-out cross-validation** - *Sean B. Holden* - 1996 |

| **PAL: A Pattern and dash;Based First and dash;Order Inductive System** - *Eduardo F. Morales* - 1997 |

| **PALO: A probabilistic hill-climbing algorithm** - *Russell Greiner* - July 1996 |

| **Parallel Distributed Processing - Explorations in the Microstructure of Cognition** - *J. L. McClelland, D. E. Rumelhart and t. P. R. Group* - 1986 |

| **Parallel Distributed Processing Volume I: Foundations** - *D. E. Rumelhart and J. L. McClelland* - 1986 |

| **A Parallel Network that Learns to Play Backgammon** - *G. Tesauro and T. J. Sejnowski* - 1989 |

| **Parallel Networks that Learn to Pronounce English Text** - *T. J. Sejnowski and C. R. Rosenberg* - February 1987 |

| **Parameterized learning complexity** - *R. Downey, P. Evans and M. Fellows* - 1993 |

| **A parametrization scheme for classifying models of learnability** - *S. Ben-David, G. M. Benedek and Y. Mansour* - 1989 |

| **The Parti-game Algorithm for Variable Resolution Reinforcement Learning in Multidimensional State-spaces** - *Andrew W. Moore and Christopher G. Atkeson* - 1995 |

| **Passive distance learning for robot navigation** - *Sven Koenig and Reid G. Simmons* - 1996 |

| **Pattern Classification and Scene Analysis** - *R. O. Duda and P. E. Hart* - 1973 |

| **A Pattern Classification Approach to Evaluation Function Learning** - *K. Lee and S. Mahajan* - August 1988 |

| **Pattern languages are not learnable** - *R. E. Schapire* - 1990 |

| **Pattern Recognition and Valiant’s Learning Framework** - *L. Saitta and F. Bergadano* - February 1993 |

| **Pattern recognition as rule guided inductive inference** - *R. Michalski* - 1980 |

| **The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain** - *F. Rosenblatt* - 1958 |

| **The Perceptron Algorithm is Fast for Nonmalicious Distributions** - *E. B. Baum* - 1990 |

| **The perceptron algorithm vs. Winnow: linear vs. logarithmic mistake bounds when few input variables are relevant** - *Jyrki Kivinen and Manfred K. Warmuth* - 1995 |

| **Perceptrons** - *M. Minsky and S. Papert* - 1969 |

| **A perceptual criterion for visually controlling learning** - *M. Suwa and H. Motoda* - 1993 |

| **Performance bounds for nonlinear time series prediction** - *Ron Meir* - 1997 |

| **Performance Improvement of Robot Continuous-Path Operation through Iterative Learning Using Neural Networks** - *Peter C. Y. Chen, James K. Mills and Kenneth C. Smith* - 1996 |

| **Performance of a Stochastic Learning Chip** - *J. Alspector and R. B. Allen* - 1989 |

| **Periodicity in generations of automata** - *J. Case* - 1974 |

| **Pessimistic decision tree pruning based on tree size** - *Yishay Mansour* - 1997 |

| **Phoneme Recognition Using Time-Delay Neural Networks** - *A. Waibel, T. Hanazawa, G. Ginton and K. Shikano* - 1987 |

| **A Physiological Basis for a Theory of Synapse Modification** - *M. F. Bear, L. N. Cooper and F. F. Ebner* - July 3 1987 |

| **Piecemeal graph exploration by a mobile robot** - *Baruch Awerbuch, Margrit Betke, Ronald L. Rivest and Mona Singh* - 1995 |

| **Piecemeal learning of an unknown environment** - *Margrit Betke, Ronald L. Rivest and Mona Singh* - 1995 |

| **Planning and learning in permutation groups** - *A. Fiat, S. Moses, A. Shamir, I. Shimshoni and G. Tardos* - 1989 |

| **Planning with abstraction based on partial predicate mappings** - *Y. Okubo and M. Haraguchi* - 1992 |

| **Plausible Justification Trees: A Framework for Deep and Dynamic Integration of Learning Strategies** - *Gheorghe Tecuci* - 1993 |

| **Playing the matching-shoulders lob-pass game with logarithmic regret** - *J. Kilian, K. J. Lang and B. A. Pearlmutter* - 1994 |

| **A Polynomial Approach to the Constructive Induction of Structural Knowledge** - *Jörg-Uwe Kietz and Katharina Morik* - 1994 |

| **Polynomial bounds for VC dimension of sigmoidal neural networks** - *Marek Karpinski and Angus Macintyre* - 1995 |

| **Polynomial Learnability as a Formal Model of Natural Language Acquisition** - *Naoki Abe* - 1989 |

| **Polynomial learnability of linear threshold approximations** - *T. Bylander* - 1993 |

| **Polynomial learnability of probabilistic concepts with respect to the Kullback-Leibler divergence** - *N. Abe, J. Takeuchi and M. K. Warmuth* - 1991 |

| **Polynomial learning of semilinear sets** - *N. Abe* - 1989 |

| **A polynomial time algorithm that learns two hidden net units** - *E. Baum* - 1990 |

| **Polynomial time algorithms for learning neural nets** - *E. B. Baum* - 1990 |

| **Polynomial time inference of a subclass of context-free transformations** - *H. Arimura, H. Ishizaka and T. Shinohara* - 1992 |

| **Polynomial time Inference of Arbitrary Pattern Languages** - *S. Lange and R. Wiehagen* - 1991 |

| **Polynomial Time Inference of Extended Regular Pattern Languages** - *T. Shinohara* - 1982 |

| **Polynomial time inference of pattern languages and its applications** - *T. Shinohara* - 1982 |

| **Polynomial time inference of unions of tree pattern languages** - *H. Arimura, T. Shinohara and S. Otsuki* - 1992 |

| **Polynomial time learnability of simple deterministic languages** - *H. Ishizaka* - 1990 |

| **Polynomial time learning with version spaces** - *Haym Hirsh* - 1992 |

| **Polynomial uniform convergence and polynomial-sample learnability** - *A. Bertoni, P. Campadelli, A. Morpurgo and S. Panizza* - 1992 |

| **Polynomially Sized Boolean Circuits are not Learnable** - *D. Beaver* - December 1987 |

| **Polynomially Sparse Variations and Reducibility among prediction problems** - *N. Abe and O. Watanabe* - July 1992 |

| **A polynomial-time algorithm for learning k-variable pattern languages from examples** - *M. Kearns and L. Pitt* - 1989 |

| **Polynomial-time identification of very regular languages in the limit** - *N. Tanida and T. Yokomori* - 1992 |

| **Polynomial-time inference of all valid implications for Horn and related formulae** - *E. Boros, Y. Crama and P. L. Hammer* - 1990 |

| **Polynomial-time inference of general pattern languages** - *K. P. Jantke* - 1984 |

| **Polynomial-time learning of very simple grammars from posistive data** - *T. Yokomori* - 1991 |

| **Polynomial-time MAT learning of multilinear logic programs** - *K. Ito and A. Yamamoto* - 1992 |

| **The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length** - *Dana Ron, Yoram Singer and Naftali Tishby* - 1996 |

| **The Power of Pluralism for Automatic Program Synthesis** - *C. Smith* - 1982 |

| **The Power of Prob in Popperian FINite learning** - *R. Daley, B. Kalyanasundaram and M. Velauthapillai* - 1994 |

| **The power of procrastination in inductive inference: how it depends on used ordinal notations** - *Andris Ambainis* - 1995 |

| **The Power of Self-Directed Learning** - *S. A. Goldman and R. H. Sloan* - 1994 |

| **The power of team exploration: two robots can learn unlabeled directed graphs** - *Michael A. Bender and Donna K. Slonim* - 1994 |

| **The power of vacillation** - *J. Case* - 1988 |

| **A powerful heuristic for the discovery of complex patterned behavior** - *Raúl E. Valdés-Pérez and Aurora Pérez* - 1994 |

| **Practical Issues in Temporal Difference Learning** - *Gerald Tesauro* - 1992 |

| **Practical PAC Learning** - *Dale Schuurmans and Russell Greiner* - 1995 |

| **Predicting {0,1} Functions on Randomly Drawn Points** - *D. Haussler, N. Littlestone and M. K. Warmuth* - 1994 |

| **Predicting a binary sequence almost as well as the optimal biased coin** - *Yoav Freund* - 1996 |

| **Predicting multiprocessor memory access patterns with learning models** - *M. F. Sakr, S. P. Levitan, D. M. Chiarulli, B. G. Horne and C. L. Giles* - 1997 |

| **Predicting nearly as well as the best pruning of a decision tree** - *D. P. Helmbold and R. E. Schapire* - 1995 |

| **Predicting the Future: A Connectionist Approach** - *A. Weigend, B. Huberman and D. Rumelhart* - 1990 |

| **Prediction and limiting synthesis of recursively enumerable classes of functions** - *J. M. Barzdin and R. Freivalds* - 1974 |

| **Prediction Preserving Reducibility** - *L. Pitt and M. K. Warmuth* - December 1990 |

| **Predictive Hebbian learning** - *Terrence J. Sejnowski, Peter Dayan and P. Read Montague* - 1995 |

| **Preliminary study on program synthesis based on induction and verification** - *K. Furukawa* - 1992 |

| **Prequential Analysis, Stochastic Complexity and Bayesian Inference** - *A. P. Dawid* |

| **Preservation of predictability under polynomially sparse variations and its applications** - *N. Abe* - 1992 |

| **Preventing Overfitting of cross-validation data** - *Andrew Y. Ng* - 1997 |

| **Prioritized Sweeping: Reinforcement Learning With Less Data and Less Time** - *Andrew W. Moore and Christopher G. Atkeson* - 1993 |

| **A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization** - *Thorsten Joachims* - 1997 |

| **Probabilistic and team PFIN-type learning: general properties** - *Andris Ambainis* - 1996 |

| **A probabilistic approach to feature selection - a filter solution** - *Huan Liu and Rudy Setiono* - 1996 |

| **Probabilistic Hill-Climbing: Theory and Applications** - *Russell Greiner* - June 1992 |

| **Probabilistic Inductive Inference** - *L. Pitt* - 1989 |

| **Probabilistic Inductive Inference Ph.D Thesis** - *L. Pitt* - 1985 |

| **Probabilistic instance-based learning** - *Henry Tirri, Petri Kontkanen and Petri Myllymäki* - 1996 |

| **Probabilistic language learning under monotonicity constraints** - *Léa Meyer* - 1995 |

| **Probabilistic linear tree** - *João Gama* - 1997 |

| **Probabilistic Program Synthesis** - *K. Podnieks* - 1977 |

| **Probabilistic synthesis of enumerated classes of functions** - *K. M. Podnieks* - 1975 |

| **Probabilistic Versus Deterministic Inductive Inference in Nonstandard Numberings** - *R. Freivalds, E. B. Kinber and R. Wiehagen* - 1988 |

| **Probability and confirmation** - *H. Putnam* - 1975 |

| **Probability and Measure** - *Patrick Billingsley* - 1986 |

| **Probability and Plurality for Aggregations of Learning Machines** - *L. Pitt and C. Smith* - 1988 |

| **Probability inequalities for sums of bounded random variables** - *W. Hoeffding* - March 1963 |

| **Probability is more powerful than team for language identification from positive data** - *S. Jain and A. Sharma* - 1993 |

| **Probability Matching, the Magnitude of Reinforcement, and Classifier System Bidding** - *David E. Goldberg* - 1990 |

| **Probably almost Bayes decisions** - *P. Fischer, S. Pölt and H. U. Simon* - 1991 |

| **Probably Almost Discriminative Learning** - *Kenji Yamanishi* - 1995 |

| **Probably Approximate Learning of Sets and Functions** - *B. K. Natarajan* - April 1991 |

| **Probably Approximately Correct Learning** - *D. Haussler* - 1990 |

| **The Probably Approximately Correct PAC and Other Learning Models** - *D. Haussler and M. K. Warmuth* - 1993 |

| **Probably Approximately Optimal Derivation Strategies** - *Russell Greiner and Pekka Orponen* - April 1991 |

| **Probably Approximately Optimal Satisficing Strategies** - *Russell Greiner and Pekka Orponen* - April 1996 |

| **Probably-Approximate Learning over Classes of Distributions** - *B. K. Natarajan* - 1989 |

| **The ‘lob-pass’ problem and an on-line learning model of rational choice** - *N. Abe and J. Takeuchi* - 1993 |

| **The Problem of Expensive Chunks and its Solution by Restricting Expressiveness** - *Milind Tambe, Allen Newell and Paul S. Rosenbloom* - 1990 |

| **Problems in Inductive Inference** - *J. Case* - 1982 |

| **Problems of computational and information complexity in machine vision and learning** - *S. R. Kulkarni* - 1991 |

| **Proc. 1st Annu. Workshop on Comput. Learning Theory** - *D. Haussler and L. Pitt* - 1988 |

| **Proc. 2nd Annu. Workshop on Comput. Learning Theory** - *R. Rivest and D. Haussler and M. K. Warmuth* - 1989 |

| **Proc. 3rd Annu. Workshop on Comput. Learning Theory** - *M. Fulk and J. Case* - 1990 |

| **Proc. 4th Annu. Workshop on Comput. Learning Theory** - *L. Valiant and M. Warmuth* - 1991 |

| **Proc. 5th Annu. Workshop on Comput. Learning Theory** - *B. Daley and D. Haussler* - 1992 |

| **Proc. of the First International Workshop on Algorithmic Learning Theory** - *S. Arikawa and S. Goto and S. Ohsuga and T. Yokomori* - 1990 |

| **Proc. of the Second International Workshop on Algorithmic Learning Theory** - *S. Arikawa and A. Maruoka and T. Sato* - 1991 |

| **Prognostication of automata and functions** - *J. M. Barzdin* - 1971 |

| **Program Construction From Examples** - *P. D. Summers* - 1976 |

| **Program Size and Teams for Computational Learning** - *A. Sharma* - 1990 |

| **Program size in restricted programming languages** - *A. Meyer* - 1972 |

| **Program Size Restrictions in Computational Learning** - *S. Jain and A. Sharma* - 1994 |

| **Program Size Restrictions in Inductive Learning** - *S. Jain and A. Sharma* - 1990 |

| **Program Synthesis in the Presence of Infinite Number of Inaccuracies** - *S. Jain* - October 1994 |

| **Projection Pursuit** - *Peter J. Huber* - 1985 |

| **Projection Pursuit Regression** - *J. H. Friedman and W. Stuetzle* - December 1981 |

| **Proper learning algorithm for functions of k terms under smooth distributions** - *Yoshifumi Sakai, Eiji Takimoto and Akira Maruoka* - 1995 |

| **Properties of language classes with finite elasticity** - *T. Moriyama and M. Sato* - 1993 |

| **Protein folding: symbolic refinement competes with neural networks** - *Susan Craw and Paul Hutton* - 1995 |

| **Protein secondary structure prediction based on stochastic-rule learning** - *H. Mamitsuka and K. Yamanishi* - 1992 |

| **Prototype and feature selection by sampling and random mutation hill climbing algorithms** - *David B. Skalak* - 1994 |

| **Prototype Nonintrusive Appliance Load Monitor** - *G. W. Hart* - September 1985 |

| **Proving based on similarity** - *K. Fujita and M. Harao* - 1992 |

| **Prudence and Other Conditions on Formal Language Learning** - *M. Fulk* - 1990 |

| **Prudence in Language Learning** - *S. A. Kurtz and J. S. Royer* - 1988 |

| **Prudence in Vacillatory Language Identification** - *S. Jain and A. Sharma* - 1995 |

| **Pruning adaptive boosting** - *Dragos D. Margineantu and Thomas G. Dietterich* - 1997 |

| **Pruning Algorithms for Rule Learning** - *Frnkranz Johannes* - 1997 |

| **Purposive Behavior Acquisition for a Real Robot by Vision-Based Reinforcement Learning** - *Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida and Koh Hosoda* - 1996 |