| **Fast and efficient reinforcement learning with truncated temporal differences** - *Pawel Cichosz and Jan J. Mulawka* - 1995 |

| **Fast Distribution-Specific Learning** - *Dale Schuurmans and Russell Greiner* - 1997 |

| **Fast effective rule induction** - *William W. Cohen* - 1995 |

| **Fast identification of geometric objects with membership queries** - *W. J. Bultman and W. Maass* - 1991 |

| **Fast Learning in Multi-Resolution Hierarchies** - *J. Moody* - 1989 |

| **Fast Learning in Networks of Locally-Tuned Processing Units** - *J. Moody and C. Darken* - 1989 |

| **Fast learning of k-term DNF formulas with queries** - *Avrim Blum and Stephen Rudich* - 1995 |

| **Fast Learning of k-term DNF Formulas with Queries** - *A. Blum and S. Rudich* - 1992 |

| **Fast Probabilistic Algorithms for Hamiltonian Circuits and Matchings** - *D. Angluin and L. G. Valiant* - 1979 |

| **Fat-shattering and the learnability of real-valued functions** - *P. L. Bartlett, P. M. Long and R. C. Williamson* - 1994 |

| **Feature Discovery by Competitive Learning** - *D. E. Rumelhart and D. Zipser* - 1985 |

| **Feature engineering and classifier selection: A case study in Venusian volcano detection** - *Lars Asker and Richard Maclin* - 1997 |

| **Feature Extraction Using an Unsupervised Neural Network** - *N. Intrator* - 1990 |

| **Feature-Based Methods for Large Scale Dynamic Programming** - *John N. Tsitsiklis and Benjamin van Roy* - 1996 |

| **A few results on the complexity of classes of identifiable recursive function sets** - *R. Klette* - 1977 |

| **Finding Natural Clusters Through Entropy Minimization** - *R. S. Wallace* - June 1989 |

| **Finding Patterns Common to a Set of Strings** - *D. Angluin* - 1980 |

| **Finding tree patterns consistent with positive and negative examples using queries** - *H. Ishizaka, H. Arimura and T. Shinohara* - 1994 |

| **Finite Identification of Functions by Teams with Success Ratio 12 and Above** - *Sanjay Jain, Arun Sharma and Mahendran Velauthapillai* - 1995 |

| **Finite identification of general recursive functions by probabilistic strategies** - *R. V. Freivalds* - 1979 |

| **Finite learning by a team** - *S. Jain and A. Sharma* - 1990 |

| **FINite Learning Capabilities and Their Limits** - *Robert Daley and Bala Kalyanasundaram* - 1997 |

| **Finiteness results for sigmoid** - *A. Macintyre and E. D. Sontag* - 1993 |

| **First Nearest Neighbor Classification on Frey and Slate’s Letter Recognition Problem** - *Terence C. Fogarty* - 1992 |

| **First Order Regression** - *Aram Karaliccaron and Ivan Bratko* - 1997 |

| **First thoughts on grammatical inference** - *J. A. Feldman* - 1967 |

| **Flattening and Saturation: Two Representation Changes for Generalization** - *Céline Rouveirol* - 1994 |

| **FONN: Combining first order logic with connectionist learning** - *Marco Botta, Attilo Giordana and Roberto Piola* - 1997 |

| **For every generalization action is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance** - *R. Bharat Rao, Diana Gordon and William Spears* - 1995 |

| **A form of analogy as an abductive inference** - *M. Haraguchi* - 1992 |

| **Formal Learning theory** - *D. Osherson and S. Weinstein* - 1983 |

| **Formal Models of Language Learning** - *S. Pinker* - 1979 |

| **Formal Principles of Language Acquisition** - *K. Wexler and P. Culicover* - 1980 |

| **A formal study of learning via queries** - *O. Watanabe* - 1990 |

| **A Formal Theory of Inductive Causation** - *J. Pearl and T. S. Verma* - October 1990 |

| **A Formal Theory of Inductive Inference: Part 1** - *R. J. Solomonoff* - 1964 |

| **A Formal Theory of Inductive Inference: Part 2** - *R. J. Solomonoff* - 1964 |

| **Forward models: Supervised learning with a distal teacher** - *M. Joardan and D. Rumelhart* - July 1990 |

| **Four Types of Learning Curves** - *S. Amari, N. Fujita and S. Shinomoto* - 1992 |

| **Four types of noise in data for PAC Learning** - *R. H. Sloan* - 1995 |

| **A Framework for Average Case Analysis of Conjunctive Learning Algorithms** - *Michael J. Pazzani and Wendy Sarrett* - 1992 |

| **A Framework for Empirical Discovery** - *P. Langley and B. Nordhausen* - 1986 |

| **A framework for structural risk minimization** - *John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson and Martin Anthony* - 1996 |

| **Free to choose: investigating the sample complexity of active learning of real valued functions** - *Partha Niyogi* - 1995 |

| **Frequencies vs biases: machine learning problems in natural language processing - abstract** - *Fernando C. N. Pereira* - 1994 |

| **Frequencies vs. biases: machine learning problems in natural language processing - abstract** - *F. C. N. Pereira* - 1994 |

| **From inductive inference to algorithmic learning theory** - *R. Wiehagen* - 1992 |

| **From noise-free to noise-tolerant and from on-line to batch learning** - *Norbert Klasner and Hans Ulrich Simon* - 1995 |

| **From on-line to batch learning** - *N. Littlestone* - 1989 |

| **From specifications to programs: induction in the service of synthesis** - *N. Dershowitz* - 1994 |

| **Function learning from interpolation** - *Martin Anthony and Peter Bartlett* - 1995 |

| **Functional models for regression tree leaves** - *Luís Torgo* - 1997 |

| **Functionality in Neural Nets at AAAI** - *L. Valiant* - 1988 |

| **Functionality in neural networks** - *L. G. Valiant* - 1988 |

| **Functions computable in the Limit by Probabilistic Machines** - *R. Freivalds* - 1975 |

| **A Further Comparison of Splitting Rules for Decision-Tree Induction** - *Wray Buntine and Tim Niblett* - 1992 |

| **A further note on inductive generalization** - *G. D. Plotkin* - 1971 |

| **Fuzzy analogy based reasoning and classification of fuzzy analogies** - *T. Iwatani, S. Tano, A. Inoue and W. Okamoto* - 1994 |