
[19] R. A. Gopinath and C. S. Burrus. Statespace Approach to Multiplicity M Orthonormal Wavelet Bases. Technical Report CML TR9122, Rice University, 1991.
[20] R. A. Gopinath and C. S. Burrus. Wavelets and Filter Banks. In C. K. Chui, editor, Wavelets: A Tutorial in Theory and Applications, pages 603{654. Acad. Press, 1992.
[21] R. A. Gopinath and C. S. Burrus. Factorization Approach to Unitary TimeVarying Filter Banks. Technical Report CMLTR9223, Rice University, December 1992.
[22] R. A. Gopinath and C. S. Burrus. On CosineModulated Wavelet Orthonormal Bases. IEEE Trans. in Image Processing, to appear.
[23] R. A. Gopinath and C. S. Burrus. Theory Of Modulated Filter Banks And Modulated Wavelet Tight Frames. Technical Report CML TR9218, August 1992. Submitted to Applied and Computational Harmonic Analysis: Wavelets and Signal Processing.
[24] R. A. Gopinath and C. S. Burrus. Unitary Fir Filter Banks and Symmetry. Technical Report CML TR9217, August 1992. Submitted to IEEE Trans. in CAS II.
[25] R. A. Gopinath and C. S. Burrus. Theory Of Modulated Filter Banks And Modulated Wavelet Tight Frames. In Proc. of ICASSP, '93, Minneapolis,Minnesota. '93
[26] P. Goupillaud, A. Grossman, and J. Morlet. Cyclooctave and Related Transforms in Seismic Signal Analysis. Geoexploration, (23), 1984.
[27] P. Heller. Private Communication.
[28] C. Herley, J. Kovacevic, K. Ramachandran, and M. Vetterli. Timevarying Orthonormal Tilings of the Timefrequency Plane. Technical Report CU/CTR/TR 315 9225, Columbia University, 1992.
[29] C. Herley et. al. Timevarying Orthonormal Tilings of the Timefrequency Plane. In Proc. of IEEESP Intl. Symp. on TimeFreq. and TimeScale Analysis. '92.
[30] C. Herley and M. Vetterli. Timevarying Filter Banks and Wavelets. Technical report, Columbia University, 1992.
[31] T. P. Barnwell III. Subband Coder Design Incorporating Recursive Quadrature Filters and Optimum Adpcm Coders. IEEE Trans. in ASSP, 30(2):766{784, 1982.
[32] R. D. Koilpillai and P. P. Vaidyanathan. CosineModulated Fir Filter Banks Satisfying Perfect Reconstruction. IEEE Trans. in SP, pages 770{783, April 1992.
[33] J. Kovacevic and M. Vetterli. Perfect Reconstruction Filter Banks with Rational Sampling Rate Changes. In Proc. of ICASSP, volume 3, pages 1785{1788. IEEE, May 1991.
[34] J. Kovacevic and M. J. Vetterli. Nonseparable Multidimensional Perfect Reconstruction Filter Banks And Wavelet Bases for IRn. IEEE Trans. in Information Theory, 38:533{555, March 1991.
[35] W. M. Lawton. Necessary And Sufficient Conditions for Existence Of on Wavelet Bases. Journal of Math. Physics, 1990.
[36] S. Mallat. Multiresolution Approximation and Wavelets. Trans. of American Math. Soc., (315):69{88, 1989.
[37] S. G. Mallat and Z. Zhang. Matching Pursuits with TimeFrequency Dictionaries. Technical Report 619, New York University, CIMS, 1992.
[38] H. Malvar. Signal Processing with Lapped Transforms. Artech House, 1992.
[39] H. S. Malvar. Extended Lapped Transforms: Properties, Applications and Fast Algorithms. IEEE Trans. on SP, 26:2703{2714, November 1990.
[40] H. S. Malvar. Modulated QMF Filter Banks With Perfect Reconstruction. Electronics Letters, 26:906{907, June 1990.
[41] J. Mau. Perfect Reconstruction Modulated Filter Banks. In Proc. of ICASSP '92, volume 4, pages IV{273.
[42] Y. Meyer. Ondelettes, functions splines et analyses gradu?ees. Lectures at Univ. of Torino, Italy, 1986.
[43] F. Mintzer. Filters for Distortionfree Twoband Multirate Filter Banks. IEEE Trans. in ASSP, pages 626{630, June 1985.
[44] K. Nayebi, T. Barnwell III, and M. J. T. Smith. The Time Domain Analysis And Design Of Exactly Reconstructing FIR Analysis/Synthesis Filter Banks. IEEE Trans. in ASSP, 1991.
[45] K. Nayebi, T. Barnwell III, and M. J. T. Smith. Nonuniform Filter Banks : A Reconstruction and Design Theory. IEEE Trans. in SP, June 1993.
[46] T. Q. Nguyen and P. P. Vaidyanathan. Maximally Decimated PerfectReconstruction FIR Filter Banks with Pairwise MirrorImage Analysis and Synthesis Frequency Responses. IEEE Trans. in ASSP, 36(5):693{706, 1988.
[47] H. J. Nussbaumer. Pseudoqmf Filter Bank. IBM Technical Disclosure Bulletin, 24(6):3081{3087, nov 1981.
[48] J. P. Princen and A. B. Bradley. Analysis Synthesis Filter Bank Design Based on Time Domain Alias Cancellation. IEEE Trans. in ASSP, 34:1153{1161, 1986.
[49] O. Rioul and M. Vetterli. Wavelets And Signal Processing. IEEE Signal Processing Magazine, pages 14{37, oct 1991.
[50] J. H. Rothweiler. Polyphase Quadrature Filters  A New Subband Coding Scheme. pages 1280{1283.
[51] M. J. Smith and T. P. Barnwell. Exact Reconstruction techniques for treestructured subband coders. IEEE Trans. in ASSP, 34:434{441, 1986.
[52] A. K. Soman and P. P. Vaidyanathan. Linear Phase Paraunitary Filter Banks : Theory, Factorizations and Applications. Technical report, California Institute of Technology, May 1992.
[53] P. Steffen. Private Communication.
[54] P. P. Vaidyanathan. Improved Technique for The Design Of Perfect Reconstruction FIR QMF Banks With Lossless Polyphase Matrices. IEEE Trans. in ASSP, 37(7):1042{ 1056, 1989.
[55] P. P. Vaidyanathan. Mutirate Systems and Filter Banks. Prentice Hall, 1992.
[56] P. P. Vaidyanathan and PhuongQuan Hoang. Lattice Structures for Optimal Design and Robust Implementation of TwoChannel Perfect Reconstruction Qmf banks. IEEE Trans. in ASSP, 36(1):81{93, 1988.
[57] M. Vetterli and Didier Le Gall. Perfect Reconstruction Fir Filter Banks : Some Results and Properties. IEEE Trans. in ASSP, 37(7):1057{1071, 1989.
[58] M. Vetterli and C. Herley. Wavelets And Filter Banks : Theory And Design. IEEE, Trans. in ASSP, pages 2207{ 2232, Sept 1992.
[59] M. J. Vetterli. Multirate Filter Banks. IEEE Trans. in ASSP, 35:356{372, 1987.
[60] E. Wigner. Quantum Mechanical Distribution Functions Revisited. In W. Yourgrau and A. van der Merwe, editors, Perspectives in Quantum Theory. MIT Press, Cambridge, MA, 1971.
[61] H. Zou and A. H. Tewfik. Discrete Orthogonal MBand Wavelet Decompositions. In Proc. of ICASSP, volume 4, pages IV{605{IV{608. IEEE, 1992.