Cover Image
close this bookCentral Eurasian Water Crisis: Caspian, Aral, and Dead Seas (UNU, 1998, 203 pages)
close this folderPart II: The Aral Sea
close this folder4. Creeping environmental problems in the Aral Sea basin
View the document(introduction...)
View the documentIntroduction
View the documentIntroduction to the notion of creeping environmental problems
View the documentCharacteristics of CEPs
View the documentCEPs and the Aral region
View the documentConcluding comments and a call for research
View the documentAcknowledgement
View the documentReferences

Characteristics of CEPs

Several general characteristics can be used to categorize CEPs into subgroups: time and space scales, rates of change, levels of scientific uncertainty, levels of visible degradation, the seemingly impersonal nature of the causes of CEPs or their effects (e.g. the tragedy of the commons), degree of politicization of an issue, reversibility of the CEP, etc.

The perceived rate at which an environmental change takes place is very important when it comes to the timing of societal responses to those changes. Although there may be ways to identify those rates quantitatively, it is often the perception of those rates that prompts action. To policy makers, as well as to the general public, rates of change are often as important, if not more so, than the magnitude of the change. Slow rates of change do not provoke societal concern, let alone response. Rapid rates tend to lead to rapid responses by decision makers. Yet rates of environmental change are often quite controversial. The scientific and popular literature on each CEP yields a broad range of rates with little agreement among them. For example, for desertification in the West African Sahel, rates of desertification vary by an order of magnitude; even the sign of the change has fallen into question (Tucker et al., 1991). For tropical deforestation in the Brazilian Amazon, the variance is considerable, by a factor of seven (Paris) and Glantz, 1992). Interestingly, in the Brazilian case, that rate of change varied from one year to the next in the 1980s. Determining when specific CEP thresholds have been crossed is not an easy task.

The time-frame over which an environmental change develops into a full-blown environmental crisis affects the lead-time available for response by decision makers to any one of the various thresholds. Thus, perceptions about the need to respond to crisis situations can develop over long as well as short time-scales. Global warming and stratospheric ozone depletion are considered global changes that occur on a decades-to-centuries time-scale; deforestation, desertification, and inland sealevel changes are regional changes occurring from years to decades; droughts (and famines) are local- to regional-scale processes that develop over a period of several months to a few years.

It may seem odd to speak of, and lump together under the same "umbrella," creeping environmental problems that occur on various time-scales. One might ask, for example, if those concerned about famine avoidance can respond to that CEP in a matter of several months, why can't other decision makers respond to their CEP relatively quickly as well? To address this point, one needs to take into account the scope of the problem (its magnitude, intensity, duration, reversibility). Although scientists and policy makers may not know exactly when thresholds of environmental change will occur with regard to their CEP, they apparently believe they have enough lead time to act, once the environmental change appears to have become a crisis.

Generally speaking, scientific uncertainties will always surround CEPs. For example, in the 1970s, researchers drew attention to spreading deserts in the West African Sahel, using photographs and satellite imagery to support their views. However, some scientists have suggested that the total area affected by desertification around the world had actually decreased by the end of the 1980s (Tucker et al., 1991). Even with regard to ozone depletion, an issue on which most scientists agree, a small but vocal backlash group has continued to challenge the evidence of ozone depletion in Antarctica.

For most CEPs there is a minority voice, often loud, that focuses on scientific uncertainties, as opposed to emphasizing what is known. Such conflicting interactions among groups within the scientific community tend to weaken the resolve of non-scientists who are expected to act (the public, policy makers, the media). Given the state of scientific knowledge on most CEPs, one can likely find within the body of scientific literature viewpoints and quantitative information to support (or attack) any desired policy action. The selective use of information drawn from the scientific literature enables policy makers to pursue any decisions they wish, regardless of the reliability of the particular pieces of scientific information they choose to use. There is a need to collect and assess the wide range of rates in the scientific literature and in the popular media for each of the different CEPs, and to identify confidence limits for each of the plausible estimates (e.g. Parisi and Glantz, 1992).

Why do CEPs continue?

Creeping environmental problems change the environment in a negative, cumulative, and, at least for some period of time, invisible way. As a result of these minor insults to the environment over time, during which no obvious step-like changes occur, both governments and individuals tend to continue to view their "usual activities" as acceptable. They assume that their activities have little, if any, lasting impact on the environment. For many people, changing routine behaviour is not easy. As Eric Hoffer (1952, p. 3) suggested in his book The Ordeal of Change, "It is my impression that no one really likes the new. We are afraid of it. It is not only as Dostoyevsky put it that 'taking a new step, uttering a new word is what people fear most.' Even in slight things, the experience of the new is rarely without some stirring of foreboding." People fear change and, unless a crisis situation is perceived, they are not likely to behave differently in the absence of any incentive to do so.

Reasons (or excuses) for not taking action are many. For the global warming issue, one excuse for delaying a societal response has been its time-scale. If the doubling of carbon dioxide in the atmosphere is not expected to occur at least until the middle of the twenty-first century or later, why worry now? Why sacrifice (some would argue, squander) the scarce time (of politicians) and money (of societies) on such a distant problem? Yet, similar requests to delay responses also occur when confronted by creeping phenomena of much shorter time-scales, such as drought-related famines, sealevel decline, or degradation of urban water quality. Thus, creeping environmental problems can be defined in such a way that they can occur on several time-scales. The time factor becomes an important characteristic of a CEP, when the rate at which the CEP progresses is compared with the timing of the appearance of its adverse consequences.

Another reason fostering inaction on Caps relates to scientific uncertainty. For example, why act at all regarding the global warming issue, when the scientific information about this particular CEP is sometimes contradictory and the remaining uncertainties are many? Yet, as suggested earlier, most environmental changes will likely be surrounded by scientific uncertainties. Nevertheless, policy makers are constantly forced to make policy decisions surrounded by uncertainty. Thus, whenever scientific uncertainty is used as an excuse for avoiding risks associated with decision-making, it should be challenged as a reason for delaying action.

Considerable discussion exists in the literature and the popular media about risk takers and those who are risk averse. The former are gamblers, whereas the latter tend to be more conservative in their approaches (and responses) to environmental change. Another related risk category that can be distinguished from these two existing ones is that of risk makers. These are decision makers whose decisions make risks for others but not necessarily for themselves. For example, reluctance to take action to slow down or stop desertification processes threatening a village far from the capital city where politicians live will likely have little political effect on decision makers at the national level. Their inaction generates growing risks for the distant inhabitants of a threatened village, but not necessarily for themselves. With regard to the declining Aral Sea level, in reality there were no adverse impacts on those in Moscow who made decisions that led to a declining Aral Sea level.

Most environmental problems do not affect an entire population of a country in a direct and visible way. At first, only those directly affected become concerned about local degradation. A central authority is likely to view that degradation as a local problem, even though similar processes may be occurring in other parts of the country (e.g. "we don't care if the Aral Sea disappears," "we don't care if species in the tropical rainforest disappear"). How, then, might the interest of central authorities (or unaffected citizens) in a local or regional creeping environmental problem be developed and sustained? The bottom line is that risk makers are often not held accountable for the environmental crises that result from their decisions.

Yet another constraint on timely action to address a CEP involves the fact that what appears to be an environmental crisis to one person may be viewed as an opportunity to someone else. For example, whereas some people may be concerned about environmental degradation, others might believe such degradation is the necessary result of a trade-off for economic development. Once past a crisis (i.e. defined as a crossroad or turning point), however, there may be a dread factor, an apocalyptic point beyond crisis from which there is no return to sustainability for the environment or the society dependent on it. With regard to the global warming issue, there have been several attempts by scientists to identify dread factors in order to provoke meaningful action from policy makers to combat it. With regard to any particular environmental problem, one can usually find examples of the use of dread factors to prompt political and societal action. The global warming situation provides a useful example of this.

In the mid-1970s modelling experiments proposed the use of 4 x CO2 (4 times pre-industrial levels of carbon dioxide) as well as 2 x CO2 experiments. The 4x scenarios, however, were highly unrealistic and were dropped. A doubling of pre-industrial levels of CO2 then took on the aura of a dread factor, although there was really nothing significant about using a doubling as a threshold of change. In the late 1970s, some scientists raised concern about the possibility of a breakup of the West Antarctic ice sheet, globally raising the sealevel rapidly by 8 metres or so. Further scientific research sharply reduced the probability of such an event. Yet another attempt to identify a dread factor was mention of the possibility of abrupt, highly disruptive changes in ocean currents over a period of a few decades (as opposed to centuries or millennia) in response to a warmer atmosphere (Broecker, 1987).

The search for an uncontestable crisis, if not dread risk, in the global warming issue continues, because previous dread factors have not captured the sustained concern of the public or of politicians. The lack of a dread risk notwithstanding, governments, for a variety of reasons, slowly began to cooperate on this CEP through the activities of the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Negotiating Committee (INC) for a Framework Convention on Climate Change. The UN Climate Convention was ratified on 21 March 1994 and, a year later, the first international Conference of the Parties was convened in Berlin, Germany, to discuss its implementation.

Döös (1994), using greenhouse gas emissions as an example, has suggested some reasons why actions by society to protect the environment have been slow and insufficient. He focused on the availability of objective scientific information: the reluctance of scientists to downplay scientific uncertainty, the focus by the media on sensational news rather than on scientific facts, deliberate neglect of scientific information for political and other reasons.

Jamieson (1991) identified and briefly summarized several reasons that affect timely policy response to climate change, which is a creeping environmental problem. Replacing the phrase "climate change" with CEP provides us with another set of factors that tend to delay societal responses to this type of environmental problem. Some of these are as follows:

1. The audience for [CEP] information is extremely diverse and the same message can mean different things to different people.

2. Many people... are not scientifically equipped to understand more than the rudiments of a [CEP] issue.

3. The impacts of a [CEP] are perhaps more correctly represented probabilistically.... In general, people are notoriously bad at assimilating and reasoning about probabilistic information.

4. Significant [CEP] is a long-term, rather than a near-term, possibility. Most people, including most policymakers, are not used to thinking about such long-term events.

5. Many of the [CEP] effects on human welfare will be relatively invisible.... People have difficulty linking... indirect impacts to an initial cause.

6. The onset of a [CEP] is gradual and uncertain, rather than dramatic and obvious.

Jamieson concluded that "our political and institutional structures are unlikely to respond aggressively enough to be helpful in the near term. So, for the present, the resource managers will be left to their own devices. The de facto policy is likely to be one of incrementalism or 'muddling through"' (Jamieson, 1991, p. 327).

The possibility also exists that, for issues as insidious as global warming, changes in climate at a regional or local level might not provide enough proof (e.g. the fingerprint) of a global climate change, because some Caps may not exhibit a readily identifiable threshold of change. US Vice President Gore has often suggested that "[w]e are not unlike the laboratory frog that, when dropped into a pot of boiling water, quickly jumps out. But when placed in lukewarm water that is slowly heated, the frog will remain there until it is rescued" (Gore, 1992, p. 42).

The following section is an attempt to identify a set of environmental changes in the Aral Sea basin that can be viewed as creeping environmental problems. It provides a brief description of each CEP and issues a call for an intensive research effort to fill in a CEP matrix for each, identifying as best as possible thresholds of awareness alluded to earlier in the chapter. The region provides, in essence, a living laboratory for geographers, biologists, political scientists, water resource specialists, environmental philosophers, politicians, among others, where they can see, within the course of one generation, the impacts of economic decisions that were devoid of societal or environmental considerations.