Cover Image
close this book Food Composition Data: A User's Perspective (1987)
close this folder Managing food composition data
close this folder Managing food composition data at the national level
View the document (introductory text)
View the document Introduction
View the document Data input
View the document Data output
View the document Special considerations
View the document Conclusions
View the document References

Data input

Data input

Data are extracted from the scientific literature on a continual basis, sought from industry, and obtained from government laboratories. In recent years especially, USDA's Human Nutrition Information Service (HNIS) has supported extra-mural contracts for the generation of data on specific foods in order to supply information otherwise lacking. The proportions of data from these sources vary with both the nutrient and the food. The data extracted from scientific literature are usually limited in their range of either nutrients or foods. Reports seldom supply comprehensive data on food composition, and details of analytical methodology and quality control are often incompletely described. Industry has been particularly helpful in providing analytical data upon which label claims are based, but these data are generally limited to the nutrients required for the label and are developed primarily for processed foods. USDA's Nutrient Composition Laboratory (NCL) provides data on selected nutrients in core foods. As discussed by Beecher elsewhere in chapter 18 of this volume, the goals of NCL coincide with ours and we are seeking ways in which to further co-ordinate our activities. The Food and Drug Administration's Revised Total Diet Study [7] is also providing additional, well-documented analyses of foods from known geographic locations.

For work performed under contract we are able to stipulate how samples are to be drawn and handled, the methods to be used for analysis, and precautions to be taken in proper performance. Contractors are required to validate analytical procedures and are asked to develop suitable quality control using standard reference and control materials. Many contractors have voluntarily taken part in analysing control samples routinely examined by cooperators in the National Food Processors Association programme, and for several years have participated in meetings in which they can discuss specific analytical problems and share information on possible solutions. There is no doubt that the co-operation and dedication of our contractors has increased the reliability of results. We realize, however, that absolute control over analytical measurements cannot be attained without imposing quality-control tests supervised by an outside laboratory. A current co-operative project with the Nutrient Composition Laboratory is providing such control in a current study and will serve as a model for future applications.

All data are carefully screened before insertion into the NDB. Data are excluded only with proper justification. The samples analysed must be representative of the food supply, and there must be evidence that the samples have been treated appropriately to avoid contamination or loss of nutrients. The analytical method must be known to be acceptable in the particular application or proven by the researcher. Data that are questionable because of insufficient explanation may be flagged for further evaluation. Flagged data are not included in the computation of means.

The Nutrient Data Bank system is now undergoing major revision. The main purpose is to make the system more efficient, taking advantage of advances in computer technology that have been made since the original system was designed. Two of the new features are of special interest. First, each food-group specialist assigned to work on the NDB will have direct access to the nutrient data through an interactive terminal and will be able to test the effects of different groupings of descriptors in the steps of creating both DB2 and DB3. Second, provision has been made to allow for the attachment of codes to the individual data that will express their reliability in various terms such as adequacy of sampling, methodology, and laboratory quality control. This approach was utilized by Exler when developing a table on the iron content of foods [4]. A similar treatment of selenium data was addressed by Beecher (see chap. 18). It is our expectation that attached codes will be able to be used to develop computer-generated confidence codes for the calculated means.

The range of nutrients included in the NDB follows the interests of the nutrition/ health community. Originally it was planned that nutrients should be limited to those for which Recommended Dietary Allowances (RDAs) have been established [3].

Recent observations on possible relationships between dietary components and health have led to demands for data on additional components. The report on Diet, Nutrition and Cancer [2], for example, pointed to the possible roles of carotene, dietary fibre, and selenium. Because of the lag between expressed interest in a new food component and the ability to generate data for its content in foods, we must anticipate users' needs and take an early initiative to supply new information. In our search for data, we concentrate on those components currently covered in the revised handbook, plus those of growing importance. Data for additional components, although not actively pursued, are entered when included in analytical reports.

The question of which foods should be included in the data bank is similar to the question about nutrients, and is perhaps as complicated. To serve as a national source of information we must be sure to cover those foods most frequently consumed by the general population, but we cannot neglect others that may be important only to certain population subgroups. Foods reported in the Nationwide Food Consumption Surveys provide both types of information. We try to keep abreast of trends in food production, the introduction of new processed foods, changes in formulation or processing, the introduction of new cultivars, and changes in breeding or feeding practices, in order to anticipate possible changes in our nation's food supply and to prepare for the impact such changes may have on measuring nutritional components.