Cover Image
close this book Food Composition Data: A User's Perspective (1987)
close this folder Managing food composition data
close this folder Managing a nutrient data-base system: meeting users' needs and expectations
View the document (introductory text)
View the document Introduction
View the document The HVH-CWRU nutrient data-base system
View the document Uses and users
View the document Meeting users' needs and expectations
View the document Conclusions
View the document References

Uses and users

Uses and users

Eight broad categories of uses of the data system have been identified (table 3). Clinical research utilizing dietary intake represents the area of greatest use for investigations of the relationships between diet and health.

Table 3. Uses and users of the HVH-CWRU nutrient data base

Clinical research Professional or academic education
University academic departments University academic departments
University medical centres University medical centres
Food manufacturers Health promotion organizations
Dialysis clinics State health departments
Clinical psychologists Software developers
Hospital clinical research centres Voluntary health organizations
Long-term care institutions Food trade associations
National Institutes of Health Professional associations
Graduate students  
Pharmaceutical manufacturers Patient education
  University academic departments
Epidemiological Dialysis clinics
University academic departments Clinical psychologists
University medical centres Dentists
Research contractors Physicians
  Health promotion orgamzations
Clinical practice Consulting dietitians
  Voluntary health organizations
University medical centres Visiting nurses' associations
Dialysis clinics Software developers
Clinical psychologists Professional associations
Dentists  
  Information for the public
Food-service menus and recipes University academic departments
University academic departments Food manufacturers
Food manufacturers Food service contractors
Hospitals State health departments
Food service contractors Voluntary health organizations
Long-term care institutions Software developers
Armed services Food trade associations
Correction/penal institutions Professional associations
State health departments Supermarket chains
Software developers Daily newspapers
Food brokers/distributors Secondary schools
Pre-schools Recipe-book authors
  Libraries
Food product development  
Food manufacturers Rule- policy-making
Physicians Federal agencies

These include studies of dietary components and hypertension [22], weight reduction with drugs, anorexia, dialysis in renal disease, pulmonary disease, alcohol consumption [3, 4,14], aging [5, 6, 7], cervical dysplasia [23], multiple sclerosis [12, 26], mental retardation, dental caries [2], atherosclerosis, high-risk pregnancy, and lactation.

The majority of these studies have been conducted at university medical centres, clinical research centres, and academic departments; however, some have been done by pharmaceutical companies investigating the nutritional adequacy of dietary supplements or enteral feeding products and by food manufacturers for in-house research for new product development. A number of clinical research investigations have been completed, or are in progress, by doctoral and masters' candidates in nutrition and medical computer systems.

Epidemiological surveys by independent research contractors with government agencies have been completed or are in progress. The largest survey was the National Evaluation of School Nutrition Programs, contracted by the Food and Nutrition Service, USDA, with System Development Corporation, in which approximately 7,000 24-hour recalls were coded and analysed for 26 nutrients [25].

The primary requirement for clinical and epidemiologic dietary studies is for current, valid, reliable nutrient calculations for specific foods, beverages, or special dietary products, in specific quantities as consumed by persons of all ages living in any region of the United States. Foodintake information is usually received as 24-hour recalls, quantified diet histories, food-intake diaries or observed records of intakes. Portion sizes may be weighed or, more frequently, estimated. There is a notable lack of standardized protocols for obtaining this information, and therefore it represents many levels of completeness. The records may be obtained by trained individuals, but in many cases are self-reported. Therefore, depending on the quality of such records, it becomes the responsibility of the data-base management team to qualify the results in terms of the completeness of the collected information.

Evaluations of the nutritional quality of analysed records, other than comparisons with the RDAs, are not provided with nutrient-analysis services. It has been the policy of this management team to recommend consultation with dietitians or nutritionists about recording of data and for interpretation of results. In spite of this, some investigators continue to plan and conduct dietary studies without recognizing the need for such assistance.

Clinical applications of nutrient analysis have been implemented in a number of large hospitals. University Hospitals of Cleveland, a 1,000-bed teaching institution, accesses the data base daily for assessing the dietary intakes of about 100 patients [16,17]. The hospital dietary department and the data-base management team have developed a recipe file system for storing the coded ingredients of each recipe. This file provides access to current nutrient values for each recipe without actually storing pre-calculated nutrient values. Efficient procedures, using computer generated precoded forms for recording intakes, are used. Completed reports are then delivered to dietitians within hours. As costs of purchasing and maintaining hardware decline, and as software becomes more transportable, it is anticipated that many more institutions will include dietary nutrient analyses as a routine component of nutritional assessment.

A major use of the data-base system is for the nutrient analysis of menus and recipes for institutional food service. These analyses usually serve as documentation of the nutritional adequacy of food served in hospitals, nursing homes, correctional institutions, state-supported residential institutions, schools, and the armed services. Governing or accrediting agencies for these institutions have set nutritional standards and usually require a comparison with the RDAs as evidence of adequacy. Rarely do they request analyses for other nutrients or food constituents. Independent developers of software are incorporating nutrient analysis into computerized systems for hospitals, restaurants, and food-service contractors for management of food inventories, recipes, menus, production schedules, cost accounting, or clinical services. Many developers have realized that creating and maintaining a food composition table is costly and are purchasing food tables with or without programs for accessing and for formating reports.

Another user of a nutrient analysis system is the broker or distributor who offers menu and recipe analyses as a service to purchasers of food products. Food manufac turers have found that using a computer for examining and manipulating ingredient and foodproduct formulas for optimal nutrient content saves time and money in the development of new products [13]. Calculations of nutrient content per portion of many prepared, ready-to-heat-andeat food-service products are supplied to institutions with the products purchased. It is not necessary for these analyses to meet the Food and Drug Administration nutrition labelling regulations, which require laboratory analysis if nutrient content appears on the label. Several physicians have formulated special dietary products for use in their practices and are using nutrient calculations during the development and testing phases.

As the computer replaces printed food composition tables, dietetic, nutrition, and food science students have been introduced to a very effective method for learning what is in food. The fast response time for queries and manipulations of menus, recipes, and portion sizes provides more information with greater understanding of the interrelationships of foods, nutrients, portion sizes, and diets. This capability extends to the potential provision of nutrient information to practicing professionals through nationwide access to nutrient data-base systems. Professional and trade associations and health promotion organizations are exploring the feasibility of providing this access to members and clients.

At another, less sophisticated level, nutrient-analysis services are being made available to the public. Health-care professionals are using simplified, understandable nutrient summaries of patients' dietary records or of their favourite foods. Food exchange lists are easily developed to meet a variety of diet prescriptions. The American Heart Association uses nutrient analysis services in the development of educational materials for physicians, dietitians, patients, and the general public [1].

Recently, through an agreement with a local software developer, a nutrient-analysis system designed for a variety of personal computers has been made available at low cost to the home user. It incorporates a data base of 800 foods and recipe ingredients with 15 nutrients which were extracted from the HVH-CWRU Nutrient Data Base. It allows the home user to plan and evaluate the nutritional adequacy of recipes, menus, and dietary intakes. Other purchasers of this software include physicians, dentists, libraries, elementary schools, secondary schools, and universities. An interesting feature of this version is the expression of refined carbohydrate in teaspoons in the nutrient summaries. A professional package for use on microcomputers, with the same food table, is being marketed to small hospitals, nursing homes, consulting dietitians, physicians, and dentists.

Two federal agencies have used the HVH-CWRU Nutrient Data Base to examine the nutrient content of common or usual portions of food [18,19, 20]. Reports generated included nutrients per portion, percentage US RDA per portion, Index of Nutritional Quality, and nutrients per 100 kilocalories. This information was used by the Federal Trade Commission for proposing rules regulating the advertising of a "nutritious food" and by the Food and Nutrition Service of USDA for regulating the kinds of foods sold in competition with federally subsidized school meals.