Cover Image
close this book Food Composition Data: A User's Perspective (1987)
close this folder International food composition data
close this folder Nutrient intake data calculated using food composition tables: factors affecting accuracy
View the document (introductory text)
View the document Introduction
View the document Materials and methods
View the document Results
View the document Discussion
View the document References

Results

Results

Table 2 permits comparison of the values of the INCAP table [17] with those obtained at our laboratory for the proximal composition, plus the iron, vitamin A, and vitamin C content of the 22 ingredients of the 3 dishes selected for this study. The values for fibre, calcium, and phosphate were not included in the table, as they add little to the objective of this work. It is readily apparent that agreement within a margin of + 20 per cent was obtained only in about one-third of the total number of analyses performed. Results were below 80 per cent of the table value in 38 per cent of the observations, while 28 per cent presented with differences of more than 20 per cent above the figure in the table.

In the case of iron and vitamin A, the tendency was for the INCAP table values to grossly overestimate the content of the foodstuffs analysed. Especially remarkable was the case of iron, where 90 per cent of our values were well below 80 per cent of the figure presented by the INCAP table. Most of the major differences in protein content were in foodstuffs that are unimportant as sources of this nutrient, like coriander, pepper, and onions.

Table 3 was constructed to show the practical implications of the differences in the nutrient compositions described above. A previous survey [2], carried out in a country village, was used as a source of data to recalculate nutrient intake using the values obtained at our laboratory. Protein consumption shows very little difference, as could be expected from table 2. Vitamin A intake, on the other hand, seems to have been slightly underestimated, and that of iron grossly overestimated, when the INCAP table values were used.

The problem of "foods as eaten" was approached by comparing the results of direct analysis of the dish with the nutrient composition calculated using the values in the INCAP table or the the values obtained by local analyses (table 2). The changes in the relative proportion of the ingredients after cooking were taken into account by directly weighing the ingredients before and after culinary processing.

Figure 1 shows that up to 22-fold differences could be found when comparing the nutrient composition of the food as eaten with that calculated from the composition of the raw ingredients ("recipe calculation"). As could be expected from the degree of "complexity" of the dishes, feijoada was the one containing the largest differences.