Cover Image
close this book Bioconversion of Organic Residues for Rural Communities (1979)
View the document From the charter of the United Nations University
View the document Foreword
close this folder Perspectives on bioconversion of organic residues for rural communities
View the document (introductory text)
View the document Introduction
View the document Sources of available nutrients
View the document The most suitable materials for bioconversion
View the document Characteristics of residues
View the document Bioconversion systems
View the document Physical and chemical treatments
View the document Microbial conversion
View the document The animal conversion phase
View the document Summary
View the document References
close this folder Availability of organic residues as a rural resource
View the document (introductory text)
View the document Discussion summary: Papers by van der Wal and Barreveld
close this folder Micro-organisms as tools for rural processing of organic residues
View the document (introductory text)
View the document Introduction
View the document Microbial utilization of mono- and di-saccharide residues
View the document Microbial conversion of starchy residues
View the document Microbial conversion of complex mixtures of compounds (Polysaccharides, Proteins, Lipids, etc.)
View the document Microbial utilization of cellulose and ligno-cellulose residues
View the document Algal culture as a source of biomass
View the document Microbial utilization of silviculture biomass
View the document Micro-organisms and marine and freshwater biomass
View the document International studies on processing organic residues
View the document References
close this folder Production of feed as an objective for bioconversion systems
View the document (introductory text)
View the document Introduction
View the document General characteristics
View the document Manure as feed
View the document Sewage-grown micro-algae
View the document Conclusion
View the document References
close this folder Environmental goals for microbial bioconversion in rural communities
View the document (introductory text)
View the document Introduction
View the document Health and water economy
View the document Fertilizer and energy economy
View the document Concluding remarks
View the document References
View the document Discussion summary: Papers by Porter, Berk and La Rivière
close this folder Strategies for developing small-scale fermentation processes in developing countries
View the document (introductory text)
View the document References
View the document Discussion summary
close this folder Production of microbial protein foods on edible substrates, food by-products, and ligno-cellulosic wastes
View the document (introductory text)
View the document Preface
View the document Introduction
View the document Contributions to the solution of nutritional problems
View the document Development of protein-rich vegetarian meat substitutes in the western world
View the document References
View the document Discussion summary
close this folder The role of ruminants in the bioconversion of tropical byproducts and wastes into food and fuel
View the document (introductory text)
View the document Introduction
View the document Nutritional limitations in the use of tropical by-products and waste
View the document Practical experience with tropical by-products and wastes as feed for ruminants
View the document An integrated system for converting tropical feeds and byproducts into milk, beef, and fuel
View the document References
View the document Discussion summary
close this folder Possible applications of enzyme technology in rural areas
View the document (introductory text)
View the document Introduction
View the document Biocatalytic processes
View the document Enzyme hydrolysis of manioc
View the document Whole cell systems
View the document Cellulose degradation and utilization
View the document Transfer of enzyme technology to rural communities
View the document Conclusions
View the document References
View the document Discussion summary
close this folder Indian experience with treated straw as feed
View the document (introductory text)
View the document Introduction
View the document Experience with straw treatment
View the document Field testing and demonstration of straw treatment
View the document General considerations
View the document Summary
View the document Annex 1. The energy efficiency of the two-stage, feed-fuel processing of straw in indian villages
View the document Annex 2. Method of calculating the value presented in table 2 for the efficiency of naoh energy usage
View the document Annex 3. Recommendations to farmers on the treatment of straw
View the document Annex 4. Calculated efficiency of milk production by straw-fed village buffaloes
View the document References
View the document Discussion summary
close this folder Indian experience with algal ponds
View the document (introductory text)
View the document Introduction
View the document Cultivation of algae in wastes for feed
View the document Problems of contamination
View the document Cultivation of algae for biofertilizer
View the document References
View the document Acknowledgements
View the document Discussion summary
close this folder Organic residues in aquaculture
View the document (introductory text)
View the document Introduction
View the document The range of production in aquaculture
View the document The value of organic wastes
View the document Direct feeding
View the document Concluding remarks
View the document References
View the document Discussion summary
close this folder Biogas generation: developments. Problems, and tasks - an overview
View the document (introductory text)
View the document Introduction
View the document What is biogas?
View the document Microbiology of CH4, or bio-methanogenesis
View the document The biogas plant-some technical considerations
View the document Environmental and operational considerations
View the document Developments and processes for rural areas
View the document Cost-benefit analyses
View the document Health hazards
View the document Bottlenecks, considerations, and research and development
View the document References
View the document Discussion summary
close this folder Mushroom production technology for rural development
View the document (introductory text)
View the document Materials and methods for growing mushrooms under natural or field conditions
View the document Growing mushrooms under semicontrolled conditions
View the document Results and discussion
View the document References
View the document Discussion summary
close this folder The combination of algal and anaerobic waste treatment in a bioregenerative farm system
View the document (introductory text)
View the document Introduction
View the document Algae production on organic wastes
View the document The bioregenerative farm
View the document References
View the document Discussion summary
close this folder A continuous composting system for disposal and utilization of animal wastes at the village level
View the document (introductory text)
View the document Status of land utilization and disposal of animal wastes
View the document A continuous composting system for land utilization of animal wastes at the village level
View the document References
close this folder Bioconversion of fruit and vegetable wastes
View the document (introductory text)
View the document State of the art of bioconversion
View the document Technical transfer
close this folder Integrated research on agricultural waste reclamation
View the document (introductory text)
View the document Introduction
View the document Production of yeast from soybean cooking waste at miso factories
View the document Application of soy waste as koji substrate for rice miso manufacturing (5, 6)
View the document Conclusion
View the document References
View the document Discussion summary
close this folder Solid state fermentation of starchy substrates
View the document (introductory text)
View the document Introduction
View the document Materials and methods
View the document Agro-economic perspectives
View the document Summary
View the document References
View the document Discussion summary
close this folder Production of single-cell protein from cellulose
View the document (introductory text)
View the document Introduction
View the document Experimental results
View the document Discussion
View the document Summary
View the document References
View the document Acknowledgements
View the document Discussion summary
close this folder Analysis of energy cost of integrated systems
View the document (introductory text)
View the document Energy cost and energy requirement
View the document Why energy analysis?
View the document Net energy intensity
View the document What criteria are offered by energy analysis?
View the document Conclusion
View the document References
close this folder Analysis of bioconversion systems at the village level
View the document (introductory text)
View the document Introduction
View the document Approach to bioconversion analysis
View the document Some results and costs from integrated systems
View the document Future development possibilities
View the document Conclusions
View the document Summary
View the document References
close this folder Nutritional evaluation of bioconversion products for farm animals
View the document (introductory text)
View the document Introduction
View the document Testing procedures for determination of nutritional value
close this folder Bioconversion products: toxicology - problems and potential
View the document (introductory text)
View the document Summary
View the document References
close this folder Nutritional evaluation in humans
View the document (introductory text)
View the document Introduction
View the document Evaluation of products of bioconversion for human consumption
View the document Procedures for nutritional evaluation in humans
View the document The evaluation of various food products
View the document Concept of productivity
View the document Conclusions
View the document References
View the document Discussion summary: Papers by van Weerden, Shacklady, and Bressani
close this folder Biomass from organic residues for animal and human feeding
View the document (introductory text)
View the document References
View the document Discussion summary
close this folder Appropriate biotechnology - summary remarks
View the document (introductory text)
View the document References
close this folder Other UNU Publications
View the document (introductory text)
View the document Books

Algae production on organic wastes

Algae production on organic wastes

High-Rate Algal Systems for Municipal Waste-Water Treatment

The treatment of municipal waste water in shallow (less than 50 cm deep), mechanically mixed, meandering (folded) channels was first proposed and demonstrated by Oswald and Golueke (9) in California. It was later studied by McGarry et al. (10) in Thailand, by Goldman and Ryther (11) in Woods Hole, Massachusetts, and by Benemann et al. (12) in California, and has been further developed by Shelef et al. (13, 14) in Israel.

Experiments at the Technion Environmental Engineering Research Center ranged from laboratory and pilot plant studies to field-scale studies in ponds of 1,000 m² each, one of which at Haifa Bay is illustrated in Figure 1.

The flow scheme of this system is shown in Figure 2, where raw municipal sewage is continuously introduced to the photosynthetic pond with an average retention time of three days, depending on climatic conditions. The effluent of this pond, which contains between 300 to 500 mg/l suspended matter, mostly algal biomass (approximately 60 per cent) and bacterial biomass (approximately 35 per cent), is treated physico-chemically, using aluminum sulphate (alum) flocculation and dissolved air flotation.



Figure. 2. Flow Scheme of the Accelerated Photosynthetic Process for Waste-Water Treatment and Algal Protein Production

The flotation unit, with a surface flow-through rate of between 4 and 6 m hr(-1), separates the algal bacterial biomass, yielding a treated effluent with average quality characteristics summarized in Table 1 and illustrated in Figure 3. This effluent has a quality adequate for use as irrigation water for most agricultural crops, or for discharge into most receiving bodies of water.



Figure. 3. Enhancement of Effluent Quality in Various Treatment Steps of the Accelerated (High Rate) Algal Process

TABLE 1. Effluent Quality from Various Stages of the Accelerated Photosynthetic WasteWater Treatment Process (under Favourable Operational Conditions)

Effluent

characteristic

Raw

sewage

Pond

effluent

Flotator

clarified

effluent

30 cm

sand

filtrate

BOD total, mg/l 330 120 <25 <10
BOD dissolved, mg/l - - <10 <10
COD total, mg/l 750 450 140 110
COD dissolved, mg/l - 120 90 85
Suspended solids, mg/l 260 300 <25 <10
Ntotal, mg/l 80 45 25 20
Ndissolved (NH3) mg/l - 20 18 18
Ptotal, mg/l 15 12 <2 <1
Coliforms/100 ml 108 106 104 <10²

By additional slow sand filtration through a 30 cm-deep sand bed, followed by disinfection by chlorination, the effluent is adequate for irrigation of all agricultural crops, including/hose edible in raw form, for discharge into virtually all surface receiving bodies of water, and for ground-water recharge.

The separated algal-bacterial biomass, in the form of "froth" containing between 4 and 5.5 per cent solids, is skimmed off, thickened by inverted decantation to a slurry of between 7 and 9 per cent solids, further dewatered to a light cake of between 14 and 18 per cent solids, and then steam drum-dried to form dry flakes or powder that can be pelletized with other feed ingredients.

The biomass production, as well as other characteristics of the system, serving, for example, a city of 100,000 inhabitants living in climatic conditions simian to those near Haifa Bay, are given in Table 2.

TABLE 2. Summary of Algae Production Data Based on Technion Pilot Plant and Field-Scale Pond Operation

Total net biomass yield (dry) 155 tons/ha-year
Average daily total biomass production (dry) 42.59/m²-day
Per cent algae in biomass 57
Algal biomass yield (dry) 88 tons/ha-year
Average daily algal biomass production (dry) 24.29/m² day
Pond area requirement for city of 100,000 inhabitants under

Eastern Mediterranean climatic conditions (assuming waste-

water flow of 200 litres per capita per day)

13.3 ha
Total yield (dry) per city 2,060 tons/year
Total protein yield (43% dry matter) 886 tons/year
Average daily incident irradiance (total) 450 cal/cm²-day
Average daily incident photosynthetically available irradiance 202 cal/cm² day
Photosynthetic light conversion efficiency (based on total

irradiance)

2.96%
Photosynthetic light conversion efficiency (based on photo-

synthetically available irradiance)

6.59%
Maximum possible light conversion efficiency (based on

photosynthetic available irradiance)

- 12%
Percentage of light conversion attained vs. potential 55%

The effluent, containing algal-bacterial biomass suspension, can be used directly to feed fish ponds, and yields of Tilapia galilea (St. Peter's fish) of over 7 tons per hectare were achieved in field experiments by Hepher and Sandbank (15). The flotator concentrate, after further thermal dewatering, can be mixed directly with other ingredients and used for semi-wet feeding of cattle and poultry (16). Sun-drying of the dewatered material is practical, preferably when dried over beds containing ground corn, soymeal, and wheat, which are components of the animal feed ration. Because preservation of the wet biomass for more than 48 hours is problematic, wet feeding is possible only when the farm animals are in close proximity to the photo synthetic waste water treatment plant. That is why most of the nutritional and feeding tests were performed with pelletized, drum-dried algal biomass. Extensive feeding experiments with broiler chicks and laying hens (17, 18) showed conclusively that between 25 and 50 per cent of the soymeal portion in the feed rations could be replaced with dried algal biomass, with no change in growth characteristics, weight gain, egg production, or the general welfare of the animals compared to animals fed feedmeal based on soymeal as the principal source of protein. An added benefit of the carotenoid-rich algae feeding was the "healthy" colour of the egg yolk.

Large-scale feeding experiments in intensive, mechanically aerated fish ponds stocked with carp (Cyprinus carpio) and St. Peter's fish (Tilapia galilea) were performed by Hepher and Sandbank 115) using pelletized feed containing approximately 22 per cent of drum-dried algal biomass, replacing on an equal protein basis all the fish meal in the ration (usually 15 per cent of the commercial ration). Fish growth rate, weight gain, and general welfare have been found conclusively to be equal to, and in most cases significantly better than, in fish fed fishmeal-based ration, with yields of between 15 and 20 tons per hectare per year of fish.

Extensive organoleptic and toxicological tests were performed on this material by Yannai et al. (19), using alum flocculated algae. The algae, although containing aluminum and wastewater-borne heavy metals, showed no adverse effects when fed to chickens or to rats fed on the chicken's meat, and no accumulation of these metals was noticed in the animal's meat or other organs. No abnormal taste or odour was noticed in organoleptic tests of algae-fed chicken or fish.

The economics of the combined waste-water treatment, water reclamation, and protein production photosynthetic system is extremely favourable (14), based on the various benefits simultaneously gained by the system - namely: (a) waste-water treatment with lower energy requirements for mechanical aeration, (b) the value of the high quality effluent for irrigation, and (c) the value of the proteins for animal feeding.

Conservatively, subtracting the benefits of waste-water treatment and reclamation results in a net cost for dried algae of less than US$140 per ton, compared to more than US$200 per ton for soymeal and more than US$380 per ton for fishmeal.

The Growth of Algae on Animal Wastes

Animal wastes constitute an excellent medium for growing algae when diluted with water, and they provide a carbon source (through bacterial aerobic degradation that produces CO2), nitrogen, phosphorus, and trace elements to sustain rich algae production.

On small farms in developing countries, where algae separation and processing are too complicated and costly, the growth of the blue-green Spirulina algae is preferred over green algae for the following reasons: (a) mechanical separation by straining or filtration is possible; (b) protein content is high (55 - 70 per cent); and (c) protein digestibility and availability are high.

Under conditions in small rural communities in developing countries, these advantages surpass the disadvantages of Spirulina compared with green algae (Chlorophytee). The disadvantages include: reduced rate of growth, need for higher temperature, need for relatively high concentrations of bicarbonates or carbonates, and sensitivity to high irradiance levels. Growing Spirulina on animal wastes has been studied experimentally under the conditions prevailing in developing countries by Seshadri (20) in India, Soong (21) in Taiwan, and others Two sets of experiments testing Spirulina growth potential on animal wastes are described herein, one on raw (fresh) cow manure and the other on anaerobically digested cow manure.

Growth potential of Spirulina on raw cow manure

Experiments on the growth potential of Spirulina maxima under outdoor conditions in shallow (20 cm) multiple batch-type 200-litre "mini-ponds" have been performed at the Technion Institute in Haifa.

Five kg of wet, raw (fresh) dairy cow manure from Kibbutz Yagur with a total solids content of 16 per cent were added to each 200-litre mini-pond in order to reach initial solids concentration of 0.4 per cent (25 9/l) based only on the added manure and excluding the initial algae concentration of approximately 200 mg/l.

The composition of the raw manure and the concentration of its various components after the manure was added to the 200-litre mini-ponds are given in Table 3. It should be noted that the composition of the manure in Table 3 includes both the suspended and the dissolved matter of the wet manure fed into the mini-ponds.

TABLE 3. Composition of Raw Cow Manure Used for Growth of Spirulina maxima

Component Raw cow manure

(wet basis)

g/kg

Concentration at 1:40

dilution in mini-pond'

(mg/l)

Total solids 166 4,150
Total volatile solids 135 3,380
COD total 155 3,880
Total Kjeldahl nitrogen 5.3 130
Ammonia nitrogen 1.6 40
Total phosphate as PO4 4.1 100
Volatile acids 10.2 260
pH 7.2** 9 - 11**

* Components of stock algae culture are excluded.
** Dimensionless

Two weeks before the addition of the manure, the mini-ponds were inoculated with Spirulina maxima that had been isolated from domestic waste-water treatment ponds (the latter ponds were inoculated with Spirulina a few years ago). The initial medium was a synthetic one enriched with 16 g/l of sodium bicarbonate. The temperature of the mini-ponds was maintained at 30 C, and the ponds were continuously stirred by a long-winged rotor (6). The concentration of Spirulina before the addition of the manure was approximately 200 mg/l, and the chlorophyll-a concentration was approximately 3.5 mg/l. The changes in suspended solids concentration and in chlorophyll-a are given in Figure 4.



Figure. 4. Chlorophyll-a and Suspended Solids Concentrations in Batch-Type 200-litre Spirulina maxima Outdoor Mini ponds Fed with Raw Cow Manure

Following the addition of the manure, chlorophyll-a concentration was reduced by 20 per cent, and for approximately 20 days algal growth was almost negligible. It should be noted that the addition of 5 kg wet, raw manure to the 200-litre mini-ponds created highly stressed conditions as far as organic loading and turbidity were concerned, and the ponds became turbid and brown. During the initial 20 days, intensive degradation of the manureborne organic matter and solids occurred, evident in the reduction of solids concentration.

Spirulina grew rapidly between the twentieth and thirtieth days, as revealed by rises both in chlorophyll-a and suspended solids concentration. After 30 days, algal concentration stabilized and a small reduction in suspended solids was observed after 40 days; this reduction was not followed by a reduction in chlorophyll concentration, which might have been due to the continuing increase in chlorophyll-a content of the alga.

No direct measurement of Spirulina biomass production was possible because of the presence of manure-borne suspended matter and the bacterial biomass developed during the degradation of the manure. Algal growth was therefore estimated by the increase in concentration of chlorophyll-a, which is a rather poor indicator of algal biomass because the chlorophyll content varies according to growth conditions, light availability, etc. Depending on conditions, chlorophyll-a content can range between 0.5 and 2.5 per cent in blue-green algae (22), and between 1 and 2.5 per cent in Spirulina grown in outdoor mass cultures (23). The chlorophyll-a content of the Spirulina maxima prior to the addition of the cow manure was approximately 1.75 per cent, and assuming that its percentage remained the same, Spirulina concentration reached 370 mg/l at the end of the experiment.

The growth of Spirulina following the addition of cow manure was therefore quite slow, but this can be explained by the high initial dose of raw manure. During the manure degradation period, algal growth was minimal, indicating the advantage of using treated manure (composted or digested) as an algae growth medium.

Growth potential of Spirulina on digested manure

Following the experiments described above, anaerobically digested cow manure from mesophilic (35°C) and from thermophilic (55°C) mixed, semi-continuously fed digesters with a retention time of eight days was used as a medium in batch, continuously illuminated, 500 ml laboratory algae growth units. The production of biogas (approximately 65 per cent methane) during the thermophilic and mesophilic anaerobic digestion of the cow manure (24) as a function of retention time and at various concentrations of total solids is given in Figure 5.



Figure. 5. Biogas Production Rate from Thermophilic (55°C) and Mesophilic (35°C) Digestion as a Function of Retention Time and Feed Total Solids (TSo) Concentration (24)

The digested matter, with approximately 16 per cent total solids, of which approximately 30 per cent of volatile solids had been destroyed during the anaerobic digestion, was mixed with the sodium bicarbonate-enriched medium at dosages of 10 and 25 g of wet, digested manure per litre of medium. The medium was inoculated with 5 ml of Spirulina maxima concentrated suspension.

Enrichments with 0.5, 1.0, and 1.5 per cent NaHCO3 in the medium were compared to growth units with no enrichment. The concentration of chlorophyll-a after ten days of algal growth, fed with 10 9/l of both mesophilically and thermophilically digested manures, is given in Figure 6.



Figure. 6. Chlorophyll-a Concentration Following Ten Days, Growth of Spirulina maxima in Batch Continuously Illuminated Laboratory Growth Units, Fed 10 Grams (Wet) per Litre of Anaerobically Digested Manure

No marked effect on Spirulina growth was observed by increasing NaHCO3 enrichment above 0.5 per cent, nor have the temperatures of the anaerobic digestion (55 C vs. 35 C) of the feed had a significant effect on Spirulina growth, as evident from the concentration of chlorophyll-a.

The effect of the dosage of digested manure is given in Figure 7, where dosages of 10 and 25 9 of wet, digested manure per litre of alga culture were compared.



Figure. 7. The Effect of Digested Manure Dosage on Chlorophyll-a Concentration in Batch Laboratory Culture of Spirulina maxima (TDM denotes thermophilically digested manure, and MDM-mesophilically digested manure.) Concentrations of digested manure are in grams (wet) per litre of growth unit.

The higher digested manure dosage, which was similar to the raw manure dosage described earlier, gave the highest increase (up to 9.3 mg/l after 12 days) in chlorophyll-a concentration. Assuming average concentrations of 1.75 per cent of chlorophyll-a in Spirulina (dry basis), an algal concentration of over 510 mg/l was achieved in 12 days. The limitations of chlorophyll-a as a reliable quantitative measurement of algal biomass production have been discussed previously.

No appreciable lag time was observed in these experiments, and no time requirement for organic matter degradation (which was particularly evident in the experiments with raw manure) was found. Obviously, the production of biogas during anaerobic digestion is an important added benefit to the production of Spirulina Combined System for Algae Production and Anaerobic Digestion.

Following the previously discussed experiments showing the potential of algal growth on anaerobically digested manure, a combined "sandwich" system was developed whereby anaerobic digestion of farm organic residues takes place at the bottom part (gas is collected by a bell-shaped dome), while the digester's supernatant directly feeds the algal pond at the upper part of the system. A small pilot plant outdoor system with a 100-litre digester and a 2.7 m² algal pond (35 cm deep) was recently set up at the Technion Institute and is now under study. Preliminary results show a production of 50 litres of biogas (STP) per day and a total biomass production (approximately 67 per cent algae) of 130 g/day (dry basis). A solar panel has recently been installed to heat the digester part of the system to approximately 37°C (mesophilic) to increase gas production rates.

A small windmill is under design to provide driving force for digester and pond mixing and for the outflow pump.