![]() | Conducting Environmental Impact Assessment in Developing Countries (United Nations University, 1999, 375 p.) |
![]() | ![]() | (introduction...) |
![]() | ![]() | Preface |
![]() | ![]() | Abbreviations |
![]() | ![]() | 1. Introduction |
![]() | ![]() | 1.1 The environmental movement |
![]() | ![]() | 1.2 Tracing the history of environmental impact assessment |
![]() | ![]() | 1.3 Changes in the perception of EIA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 1.3.1 EIA at the project level |
![]() | ![]() | 1.3.2 From project level to regional EIA |
![]() | ![]() | 1.3.3 Policy level strategic EIA |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 2. Introduction to EIA |
![]() | ![]() | 2.1 What is EIA? |
![]() | ![]() | 2.2 Who is involved in the EIA process? |
![]() | ![]() | 2.3 When should the EIA be undertaken? |
![]() | ![]() | 2.4 Effectiveness of EIA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 2.4.1 Legal regulations |
![]() | ![]() | 2.4.2 Rational and open decision-making |
![]() | ![]() | 2.4.3 Project EIA sustained by strategic EIA |
![]() | ![]() | 2.4.4 Room for public participation |
![]() | ![]() | 2.4.5 Independent review and central information |
![]() | ![]() | 2.4.6 Scoping in EIA |
![]() | ![]() | 2.4.7 Quality of the EIA |
![]() | ![]() | 2.5 EIA and other environmental management tools |
![]() | ![]() | 3. EIA process |
![]() | ![]() | 3.1 Introduction |
![]() | ![]() | 3.2 Principles in managing EIA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.2.1 Principle 1: Focus on the main issues |
![]() | ![]() | 3.2.2 Principle 2: Involve the appropriate persons and groups |
![]() | ![]() | 3.2.3 Principle 3: Link information to decisions about the project |
![]() | ![]() | 3.2.4 Principle 4: Present clear options for the mitigation of impacts and for sound environmental management |
![]() | ![]() | 3.2.5 Principle 5: Provide information in a form useful to the decision makers |
![]() | ![]() | 3.3 Framework of environmental impacts |
![]() | ![]() | 3.4 EIA process in tiers |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.4.1 Screening |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.4.1.1 Illustrations of screening |
![]() | ![]() | 3.4.2 Scoping |
![]() | ![]() | 3.4.3 The initial environmental examination |
![]() | ![]() | 3.4.4 The detailed EIA study |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.4.4.1 Prediction |
![]() | ![]() | 3.4.4.2 Assessment |
![]() | ![]() | 3.4.4.3 Mitigation |
![]() | ![]() | 3.4.4.4 Evaluation |
![]() | ![]() | 3.5 Resources needed for an EIA |
![]() | ![]() | 3.6 Some illustrations of EIA processes in various countries |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.6.1 EIA system in Indonesia |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.6.1.1 Responsibility for AMDAL |
![]() | ![]() | 3.6.1.2 Screening: determining which projects require AMDAL |
![]() | ![]() | 3.6.1.3 AMDAL procedures |
![]() | ![]() | 3.6.1.4 Permits and licenses |
![]() | ![]() | 3.6.1.5 Public participation in AMDAL |
![]() | ![]() | 3.6.2 EIA procedure and requirements in Malaysia |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.6.2.1 Integrated project-planning concept |
![]() | ![]() | 3.6.2.2 How is EIA processed and approved? |
![]() | ![]() | 3.6.3 EIA in Canada |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.6.3.1 The process |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 4. EIA methods |
![]() | ![]() | 4.1 Introduction |
![]() | ![]() | 4.2 Checklists |
![]() | ![]() | 4.2.1 Descriptive checklists |
![]() | ![]() | (introduction...) |
![]() | ![]() | 4.2.2 Weighted-scale checklists |
![]() | ![]() | 4.2.3 Advantages of the checklist method |
![]() | ![]() | 4.2.4 Limitations of the checklist method |
![]() | ![]() | 4.3 Matrix |
![]() | ![]() | (introduction...) |
![]() | ![]() | 4.3.1 Descriptive matrix |
![]() | ![]() | 4.3.2 Symbolized matrix |
![]() | ![]() | 4.3.3 Numeric and scaled matrices |
![]() | ![]() | 4.3.3.1 Simple numeric matrix |
![]() | ![]() | 4.3.3.2 Scaled matrices |
![]() | ![]() | 4.3.4 The component interaction matrix |
![]() | ![]() | 4.3.5 Advantages of the matrix approach |
![]() | ![]() | 4.3.6 Limitations of the matrix approach |
![]() | ![]() | 4.4 Networks |
![]() | ![]() | (introduction...) |
![]() | ![]() | 4.4.1 Advantages of the network method |
![]() | ![]() | 4.4.2 Limitations of the network method |
![]() | ![]() | 4.5 Overlays |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 5. EIA tools |
![]() | ![]() | 5.1 Impact prediction |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.1.1 Application of methods to different levels of prediction |
![]() | ![]() | 5.1.2 Informal modelling |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.1.2.1 Approaches to informal modelling |
![]() | ![]() | 5.1.3 Physical models |
![]() | ![]() | 5.1.4 Mathematical models |
![]() | ![]() | 5.1.5 Modelling procedure |
![]() | ![]() | 5.1.6 Sensitivity analysis |
![]() | ![]() | 5.1.7 Probabilistic modelling |
![]() | ![]() | 5.1.8 Points to be considered when selecting a prediction model |
![]() | ![]() | 5.1.9 Difficulties in prediction |
![]() | ![]() | 5.1.10 Auditing of EIAs |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.1.10.1 Auditing prediction in EIAs |
![]() | ![]() | 5.1.10.2 Problems in conducting predictive techniques audit |
![]() | ![]() | 5.1.11 Precision in prediction and decision resolution |
![]() | ![]() | 5.2 Geographical information system |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.2.1 Data overlay and analysis |
![]() | ![]() | 5.2.2 Site impact prediction |
![]() | ![]() | 5.2.3 Wider area impact prediction |
![]() | ![]() | 5.2.4 Corridor analysis |
![]() | ![]() | 5.2.5 Cumulative effects assessment and EA audits |
![]() | ![]() | 5.2.6 Trend analysis |
![]() | ![]() | 5.2.7 Predicting impacts in a real time environment |
![]() | ![]() | 5.2.8 Continuous updating |
![]() | ![]() | 5.2.9 Multi attribute tradeoff system (MATS) |
![]() | ![]() | 5.2.10 Habitat analysis |
![]() | ![]() | 5.2.11 Aesthetic analysis |
![]() | ![]() | 5.2.12 Public consultation |
![]() | ![]() | 5.2.13 Advantages of the GIS method |
![]() | ![]() | 5.2.14 Limitations of the GIS method |
![]() | ![]() | 5.3 Expert systems for EIA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.3.1 Artificial intelligence and expert systems |
![]() | ![]() | 5.3.2 Basic concepts behind expert systems |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 6. Environmental management measures and monitoring |
![]() | ![]() | 6.1 Introduction |
![]() | ![]() | 6.2 Environmental management plan (EMP) |
![]() | ![]() | (introduction...) |
![]() | ![]() | 6.2.1 Issues and mitigation measures |
![]() | ![]() | (introduction...) |
![]() | ![]() | 6.2.1.1 Project siting |
![]() | ![]() | 6.2.1.2 Plant construction and operation |
![]() | ![]() | 6.2.2 Illustrations of guidelines for mitigation measures for specific projects |
![]() | ![]() | (introduction...) |
![]() | ![]() | 6.2.2.1 Fertilizer industry |
![]() | ![]() | 6.2.2.2 Oil and gas pipelines |
![]() | ![]() | 6.2.2.3 Water resource projects |
![]() | ![]() | 6.2.2.4 Infrastructure projects |
![]() | ![]() | 6.2.3 Development of a green belt as a mitigation measure |
![]() | ![]() | 6.3 Post-project monitoring, post-audit, and evaluation |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 7. EIA communication |
![]() | ![]() | 7.1 Introduction |
![]() | ![]() | 7.2 What is expected from the user of EIA findings? |
![]() | ![]() | 7.3 Communication to the public |
![]() | ![]() | (introduction...) |
![]() | ![]() | 7.3.1 Factors that may result in effective public participation |
![]() | ![]() | (introduction...) |
![]() | ![]() | 7.3.1.1 Preplanning |
![]() | ![]() | 7.3.1.2 Policy of the executing agency |
![]() | ![]() | 7.3.1.3 Resources |
![]() | ![]() | 7.3.1.4 Target groups |
![]() | ![]() | 7.3.1.5 Effective communication |
![]() | ![]() | 7.3.1.6 Techniques |
![]() | ![]() | 7.3.1.7 Responsiveness |
![]() | ![]() | 7.3.2 Overview of the roles of the public |
![]() | ![]() | 7.3.3 Public participation techniques |
![]() | ![]() | (introduction...) |
![]() | ![]() | 7.3.3.1 Media techniques |
![]() | ![]() | 7.3.3.2 Research techniques |
![]() | ![]() | 7.3.3.3 Political techniques |
![]() | ![]() | 7.3.3.4 Structured group techniques |
![]() | ![]() | 7.3.3.5 Large group meetings |
![]() | ![]() | 7.3.3.6 Bureaucratic decentralization |
![]() | ![]() | 7.3.3.7 Interveners |
![]() | ![]() | 7.3.4 Implementing public participation |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 8. Writing and reviewing an EIA report |
![]() | ![]() | 8.1 Writing an EIA report |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.1.1 Guidelines for preparing EIA reports |
![]() | ![]() | 8.1.2 Comparison of guidelines of suggested/required components of an EIA report |
![]() | ![]() | 8.2 Review of an EIA report |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.2.1 Purpose of the review |
![]() | ![]() | 8.2.2 Information and expertise needed for review |
![]() | ![]() | 8.2.3 Strategy of the review |
![]() | ![]() | 8.2.4 Approach |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.2.4.1 Independent analysis |
![]() | ![]() | 8.2.4.2 Predetermined evaluation criteria |
![]() | ![]() | 8.2.4.3 Ad hoc review |
![]() | ![]() | 8.2.5 Specific document review criteria |
![]() | ![]() | 8.3 Preparing terms of reference for consultants or contractors |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.3.1 Checking out the consulting organization |
![]() | ![]() | 8.3.2 Strategy for formulating TOR |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 9. Emerging developments in EIA |
![]() | ![]() | 9.1 Introduction |
![]() | ![]() | 9.2 Cumulative effects assessment |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.2.1 Concepts and principles relevant to CEA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.2.1.1 Model of causality |
![]() | ![]() | 9.2.1.2 Input-process-output model |
![]() | ![]() | 9.2.1.3 Temporal and spatial accumulation |
![]() | ![]() | 9.2.1.4 Control factors |
![]() | ![]() | 9.2.2 Conceptual framework |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.2.2.1 Sources of cumulative environmental change |
![]() | ![]() | 9.2.2.2 Pathways of cumulative environmental change |
![]() | ![]() | 9.2.2.3 Cumulative effects |
![]() | ![]() | 9.2.3 Conclusion |
![]() | ![]() | 9.3 Sectoral environmental assessment |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.3.1 Need for SEA |
![]() | ![]() | 9.3.2 Differences between project level EIA and SEA |
![]() | ![]() | 9.3.3 Methodologies for SEA |
![]() | ![]() | 9.3.4 Status of SEA |
![]() | ![]() | 9.3.5 Effectiveness of SEA |
![]() | ![]() | 9.4 Environmental risk assessments |
![]() | ![]() | 9.4.1 What is environmental risk assessment? |
![]() | ![]() | 9.4.2 Terminology associated with ERA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.4.2.1 Hazards and uncertainties |
![]() | ![]() | 9.4.3 ERA and the project cycle |
![]() | ![]() | 9.4.4 ERA builds upon EIA |
![]() | ![]() | 9.4.5 Basic approach to ERA |
![]() | ![]() | 9.4.6 Characterization of risk |
![]() | ![]() | 9.4.7 Risk comparison |
![]() | ![]() | 9.4.8 Quantitative risk assessments |
![]() | ![]() | 9.4.9 Risk communication |
![]() | ![]() | 9.4.10 Risk management |
![]() | ![]() | 9.4.11 Guidelines for disaster management planning |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.4.11.1 Specification |
![]() | ![]() | 9.4.11.2 Plot plan |
![]() | ![]() | 9.4.11.3 Hazardous area classification |
![]() | ![]() | 9.4.11.4 P & I diagrams |
![]() | ![]() | 9.4.11.5 Storage of inflammable liquids |
![]() | ![]() | 9.4.11.6 Risk assessment |
![]() | ![]() | 9.5 Environmental health impact assessment |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.5.1 Need for EHIA |
![]() | ![]() | 9.5.2 Potential methodologies and approaches for addressing health impacts |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.5.2.1 Adapt EIA study activities |
![]() | ![]() | 9.5.2.2 Integrate health impacts into EIA |
![]() | ![]() | 9.5.2.3 Use a targeted approach |
![]() | ![]() | 9.5.2.4 Probabilistic risk assessment |
![]() | ![]() | 9.5.3 Proposed methodology |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.5.3.1 Determining the need for health impact assessment |
![]() | ![]() | 9.5.3.2 Identify health impacts |
![]() | ![]() | 9.5.3.3 Prediction of health impacts |
![]() | ![]() | 9.5.3.4 Interpreting health impacts |
![]() | ![]() | 9.5.3.5 Mitigation, monitoring, and reporting |
![]() | ![]() | 9.6 Social impact assessment |
![]() | ![]() | 9.6.1 What is SIA? Why SIA? |
![]() | ![]() | 9.6.2 Identifying social impact assessment variables |
![]() | ![]() | 9.6.3 Combining social impact assessment variables, project/policy stage, and setting |
![]() | ![]() | 9.6.4 Steps in the social impact assessment process |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.6.4.1 Public involvement |
![]() | ![]() | 9.6.4.2 Identification of alternatives |
![]() | ![]() | 9.6.4.3 Baseline conditions |
![]() | ![]() | 9.6.4.4 Scoping |
![]() | ![]() | 9.6.4.5 Projection of estimated effects |
![]() | ![]() | 9.6.4.6 Predicting response to impacts |
![]() | ![]() | 9.6.4.7 Indirect and cumulative impacts |
![]() | ![]() | 9.6.4.8 Change in alternatives |
![]() | ![]() | 9.6.4.9 Mitigation |
![]() | ![]() | 9.6.4.10 Monitoring |
![]() | ![]() | 9.6.5 Principles for SIA |
![]() | ![]() | 9.6.6 TOR for consultants |
![]() | ![]() | FURTHER READING |
![]() | ![]() | Annex 9.1: Case study for risk assessments |
![]() | ![]() | 10. Case studies to illustrate environmental impact assessment studies |
![]() | ![]() | Case study 10.1 Tongonan Geothermal Power Plant, Leyte, Philippines |
![]() | ![]() | Case study 10.2 Accelerated Mahaweli Development Programme |
![]() | ![]() | Case study 10.3 Tin Smelter Project in Thailand |
![]() | ![]() | Case study 10.4 Thai National Fertilizer Corporation Project |
![]() | ![]() | Case study 10.5 Map Ta Phut Port Project |
![]() | ![]() | Case study 10.6 EIA at Work: A Hydroelectric Project in Indonesia |
![]() | ![]() | Case study 10.7 The Greater Cairo Wastewater Project |
Cumulative effects refer to the accumulation of changes in environmental systems over time and across space in an additive or interactive manner. Changes may originate from actions that are single or multiple, and similar or different in kind. A unit of environmental change attributable to an individual action may be considered insignificant because of confined spatial and temporal scales. However, environmental changes originating from repeated or multiple human actions can accumulate over time and across space, resulting in cumulative effects deemed significant.
CEA is the process of systematically analysing and assessing cumulative environmental change. The practice of CEA is complex because of the need to consider multiple sources of change, alternative pathways of accumulation, and temporally and spatially variable effects. CEA can be guided by an approach that recognizes the components of sources, pathways, and effects and distinguishes attributes specific to each component. Such guidance is particularly relevant in Canada where enactment of the Canadian Environmental Assessment Act in 1992 has simulated inquiry into the theoretical and methodological bases of CEA.
Some countries have incorporated an explicit requirement to address cumulative environmental effects in their EA legislation, for example, Canada and the United States. The requirements to analyse and assess cumulative effects reflects a broadened perspective on the nature of environmental change. This perspective acknowledges multiple perturbations, complex causation, interactive processes, expanded and permeable spatial boundaries, and extended time horizons and time lags. These attributes characterize cumulative effects, or cumulative environmental change.
CEA literature generally concentrates on pervasive, regional environmental problems. Examples include acid rain, agricultural land loss, and watershed management. Clearly there is a need for regional planning and management initiatives to address such matters, but a CEA perspective can also be incorporated into individual project EIAs. Indeed, it is essential because EIA requirements usually focus on individual projects. Such requirement, and the desirability of placing project EIAs within a broader environmental management perspective, contribute to an urgent need for practical, project-level CEA approaches.
Table 9.1 highlights the major differences between conventional EIA and CEA. The distinctions listed in the table create something of a false dichotomy; in practice, it is more a question of emphasis. Conventional EIA can be applied at the policy and programme levels in ways that mirror CEA characteristics. Similarly, project-level planning can apply many CEA properties. Thus, there is considerable fertile ground within the overlap between these two related fields. A careful attention to this middle ground will both renew EIA and ground the largely conceptual field of CEA.
Table 9.1 Characteristics of conventional EIA and CEA
Aspects |
Conventional EIA |
CEA |
Purpose |
Project evaluation |
Management of pervasive environmental problems |
Proponent |
Single proponent |
Multiple projects and/or no proponents |
Sources |
Individual projects with high potential for adverse environmental
impacts |
Multiple projects and/or activities |
Disciplinary perspective |
Disciplinary and, to a lesser extent,
interdisciplinary |
Transdisciplinary and, to a lesser extent,
interdisciplinary |
Temporal perspective |
• Short to medium term |
• Medium to long term |
Spatial perspective |
• Site-specific |
• Broad spatial patterns |
Systems perspective |
• Tendency - single ecological system |
• Multiple ecological system |
Interactions |
• Interactions among project components |
• Also interactions among projects and other
activities |
Significance of interpretations |
• Significance of individual effects interpreted |
• Significance of multiple activities interpreted |
Organizational level |
• Intraorganizational |
• Interorganizational |
Relationship to planning |
• Weak links to comprehensive environmental
objectives |
• Explicit links to comprehensive environmental
objectives |
Relationship to decision-making |
Reactive; after initial decision to initiate activity |
Proactive; anticipates future actions |
Impact management |
Monitoring and management of major, direct impacts |
Comprehensive impact monitoring and management
system |