![]() | Conducting Environmental Impact Assessment in Developing Countries (United Nations University, 1999, 375 p.) |
![]() | ![]() | (introduction...) |
![]() | ![]() | Preface |
![]() | ![]() | Abbreviations |
![]() | ![]() | 1. Introduction |
![]() | ![]() | 1.1 The environmental movement |
![]() | ![]() | 1.2 Tracing the history of environmental impact assessment |
![]() | ![]() | 1.3 Changes in the perception of EIA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 1.3.1 EIA at the project level |
![]() | ![]() | 1.3.2 From project level to regional EIA |
![]() | ![]() | 1.3.3 Policy level strategic EIA |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 2. Introduction to EIA |
![]() | ![]() | 2.1 What is EIA? |
![]() | ![]() | 2.2 Who is involved in the EIA process? |
![]() | ![]() | 2.3 When should the EIA be undertaken? |
![]() | ![]() | 2.4 Effectiveness of EIA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 2.4.1 Legal regulations |
![]() | ![]() | 2.4.2 Rational and open decision-making |
![]() | ![]() | 2.4.3 Project EIA sustained by strategic EIA |
![]() | ![]() | 2.4.4 Room for public participation |
![]() | ![]() | 2.4.5 Independent review and central information |
![]() | ![]() | 2.4.6 Scoping in EIA |
![]() | ![]() | 2.4.7 Quality of the EIA |
![]() | ![]() | 2.5 EIA and other environmental management tools |
![]() | ![]() | 3. EIA process |
![]() | ![]() | 3.1 Introduction |
![]() | ![]() | 3.2 Principles in managing EIA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.2.1 Principle 1: Focus on the main issues |
![]() | ![]() | 3.2.2 Principle 2: Involve the appropriate persons and groups |
![]() | ![]() | 3.2.3 Principle 3: Link information to decisions about the project |
![]() | ![]() | 3.2.4 Principle 4: Present clear options for the mitigation of impacts and for sound environmental management |
![]() | ![]() | 3.2.5 Principle 5: Provide information in a form useful to the decision makers |
![]() | ![]() | 3.3 Framework of environmental impacts |
![]() | ![]() | 3.4 EIA process in tiers |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.4.1 Screening |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.4.1.1 Illustrations of screening |
![]() | ![]() | 3.4.2 Scoping |
![]() | ![]() | 3.4.3 The initial environmental examination |
![]() | ![]() | 3.4.4 The detailed EIA study |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.4.4.1 Prediction |
![]() | ![]() | 3.4.4.2 Assessment |
![]() | ![]() | 3.4.4.3 Mitigation |
![]() | ![]() | 3.4.4.4 Evaluation |
![]() | ![]() | 3.5 Resources needed for an EIA |
![]() | ![]() | 3.6 Some illustrations of EIA processes in various countries |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.6.1 EIA system in Indonesia |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.6.1.1 Responsibility for AMDAL |
![]() | ![]() | 3.6.1.2 Screening: determining which projects require AMDAL |
![]() | ![]() | 3.6.1.3 AMDAL procedures |
![]() | ![]() | 3.6.1.4 Permits and licenses |
![]() | ![]() | 3.6.1.5 Public participation in AMDAL |
![]() | ![]() | 3.6.2 EIA procedure and requirements in Malaysia |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.6.2.1 Integrated project-planning concept |
![]() | ![]() | 3.6.2.2 How is EIA processed and approved? |
![]() | ![]() | 3.6.3 EIA in Canada |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.6.3.1 The process |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 4. EIA methods |
![]() | ![]() | 4.1 Introduction |
![]() | ![]() | 4.2 Checklists |
![]() | ![]() | 4.2.1 Descriptive checklists |
![]() | ![]() | (introduction...) |
![]() | ![]() | 4.2.2 Weighted-scale checklists |
![]() | ![]() | 4.2.3 Advantages of the checklist method |
![]() | ![]() | 4.2.4 Limitations of the checklist method |
![]() | ![]() | 4.3 Matrix |
![]() | ![]() | (introduction...) |
![]() | ![]() | 4.3.1 Descriptive matrix |
![]() | ![]() | 4.3.2 Symbolized matrix |
![]() | ![]() | 4.3.3 Numeric and scaled matrices |
![]() | ![]() | 4.3.3.1 Simple numeric matrix |
![]() | ![]() | 4.3.3.2 Scaled matrices |
![]() | ![]() | 4.3.4 The component interaction matrix |
![]() | ![]() | 4.3.5 Advantages of the matrix approach |
![]() | ![]() | 4.3.6 Limitations of the matrix approach |
![]() | ![]() | 4.4 Networks |
![]() | ![]() | (introduction...) |
![]() | ![]() | 4.4.1 Advantages of the network method |
![]() | ![]() | 4.4.2 Limitations of the network method |
![]() | ![]() | 4.5 Overlays |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 5. EIA tools |
![]() | ![]() | 5.1 Impact prediction |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.1.1 Application of methods to different levels of prediction |
![]() | ![]() | 5.1.2 Informal modelling |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.1.2.1 Approaches to informal modelling |
![]() | ![]() | 5.1.3 Physical models |
![]() | ![]() | 5.1.4 Mathematical models |
![]() | ![]() | 5.1.5 Modelling procedure |
![]() | ![]() | 5.1.6 Sensitivity analysis |
![]() | ![]() | 5.1.7 Probabilistic modelling |
![]() | ![]() | 5.1.8 Points to be considered when selecting a prediction model |
![]() | ![]() | 5.1.9 Difficulties in prediction |
![]() | ![]() | 5.1.10 Auditing of EIAs |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.1.10.1 Auditing prediction in EIAs |
![]() | ![]() | 5.1.10.2 Problems in conducting predictive techniques audit |
![]() | ![]() | 5.1.11 Precision in prediction and decision resolution |
![]() | ![]() | 5.2 Geographical information system |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.2.1 Data overlay and analysis |
![]() | ![]() | 5.2.2 Site impact prediction |
![]() | ![]() | 5.2.3 Wider area impact prediction |
![]() | ![]() | 5.2.4 Corridor analysis |
![]() | ![]() | 5.2.5 Cumulative effects assessment and EA audits |
![]() | ![]() | 5.2.6 Trend analysis |
![]() | ![]() | 5.2.7 Predicting impacts in a real time environment |
![]() | ![]() | 5.2.8 Continuous updating |
![]() | ![]() | 5.2.9 Multi attribute tradeoff system (MATS) |
![]() | ![]() | 5.2.10 Habitat analysis |
![]() | ![]() | 5.2.11 Aesthetic analysis |
![]() | ![]() | 5.2.12 Public consultation |
![]() | ![]() | 5.2.13 Advantages of the GIS method |
![]() | ![]() | 5.2.14 Limitations of the GIS method |
![]() | ![]() | 5.3 Expert systems for EIA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.3.1 Artificial intelligence and expert systems |
![]() | ![]() | 5.3.2 Basic concepts behind expert systems |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 6. Environmental management measures and monitoring |
![]() | ![]() | 6.1 Introduction |
![]() | ![]() | 6.2 Environmental management plan (EMP) |
![]() | ![]() | (introduction...) |
![]() | ![]() | 6.2.1 Issues and mitigation measures |
![]() | ![]() | (introduction...) |
![]() | ![]() | 6.2.1.1 Project siting |
![]() | ![]() | 6.2.1.2 Plant construction and operation |
![]() | ![]() | 6.2.2 Illustrations of guidelines for mitigation measures for specific projects |
![]() | ![]() | (introduction...) |
![]() | ![]() | 6.2.2.1 Fertilizer industry |
![]() | ![]() | 6.2.2.2 Oil and gas pipelines |
![]() | ![]() | 6.2.2.3 Water resource projects |
![]() | ![]() | 6.2.2.4 Infrastructure projects |
![]() | ![]() | 6.2.3 Development of a green belt as a mitigation measure |
![]() | ![]() | 6.3 Post-project monitoring, post-audit, and evaluation |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 7. EIA communication |
![]() | ![]() | 7.1 Introduction |
![]() | ![]() | 7.2 What is expected from the user of EIA findings? |
![]() | ![]() | 7.3 Communication to the public |
![]() | ![]() | (introduction...) |
![]() | ![]() | 7.3.1 Factors that may result in effective public participation |
![]() | ![]() | (introduction...) |
![]() | ![]() | 7.3.1.1 Preplanning |
![]() | ![]() | 7.3.1.2 Policy of the executing agency |
![]() | ![]() | 7.3.1.3 Resources |
![]() | ![]() | 7.3.1.4 Target groups |
![]() | ![]() | 7.3.1.5 Effective communication |
![]() | ![]() | 7.3.1.6 Techniques |
![]() | ![]() | 7.3.1.7 Responsiveness |
![]() | ![]() | 7.3.2 Overview of the roles of the public |
![]() | ![]() | 7.3.3 Public participation techniques |
![]() | ![]() | (introduction...) |
![]() | ![]() | 7.3.3.1 Media techniques |
![]() | ![]() | 7.3.3.2 Research techniques |
![]() | ![]() | 7.3.3.3 Political techniques |
![]() | ![]() | 7.3.3.4 Structured group techniques |
![]() | ![]() | 7.3.3.5 Large group meetings |
![]() | ![]() | 7.3.3.6 Bureaucratic decentralization |
![]() | ![]() | 7.3.3.7 Interveners |
![]() | ![]() | 7.3.4 Implementing public participation |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 8. Writing and reviewing an EIA report |
![]() | ![]() | 8.1 Writing an EIA report |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.1.1 Guidelines for preparing EIA reports |
![]() | ![]() | 8.1.2 Comparison of guidelines of suggested/required components of an EIA report |
![]() | ![]() | 8.2 Review of an EIA report |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.2.1 Purpose of the review |
![]() | ![]() | 8.2.2 Information and expertise needed for review |
![]() | ![]() | 8.2.3 Strategy of the review |
![]() | ![]() | 8.2.4 Approach |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.2.4.1 Independent analysis |
![]() | ![]() | 8.2.4.2 Predetermined evaluation criteria |
![]() | ![]() | 8.2.4.3 Ad hoc review |
![]() | ![]() | 8.2.5 Specific document review criteria |
![]() | ![]() | 8.3 Preparing terms of reference for consultants or contractors |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.3.1 Checking out the consulting organization |
![]() | ![]() | 8.3.2 Strategy for formulating TOR |
![]() | ![]() | FURTHER READING |
![]() | ![]() | 9. Emerging developments in EIA |
![]() | ![]() | 9.1 Introduction |
![]() | ![]() | 9.2 Cumulative effects assessment |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.2.1 Concepts and principles relevant to CEA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.2.1.1 Model of causality |
![]() | ![]() | 9.2.1.2 Input-process-output model |
![]() | ![]() | 9.2.1.3 Temporal and spatial accumulation |
![]() | ![]() | 9.2.1.4 Control factors |
![]() | ![]() | 9.2.2 Conceptual framework |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.2.2.1 Sources of cumulative environmental change |
![]() | ![]() | 9.2.2.2 Pathways of cumulative environmental change |
![]() | ![]() | 9.2.2.3 Cumulative effects |
![]() | ![]() | 9.2.3 Conclusion |
![]() | ![]() | 9.3 Sectoral environmental assessment |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.3.1 Need for SEA |
![]() | ![]() | 9.3.2 Differences between project level EIA and SEA |
![]() | ![]() | 9.3.3 Methodologies for SEA |
![]() | ![]() | 9.3.4 Status of SEA |
![]() | ![]() | 9.3.5 Effectiveness of SEA |
![]() | ![]() | 9.4 Environmental risk assessments |
![]() | ![]() | 9.4.1 What is environmental risk assessment? |
![]() | ![]() | 9.4.2 Terminology associated with ERA |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.4.2.1 Hazards and uncertainties |
![]() | ![]() | 9.4.3 ERA and the project cycle |
![]() | ![]() | 9.4.4 ERA builds upon EIA |
![]() | ![]() | 9.4.5 Basic approach to ERA |
![]() | ![]() | 9.4.6 Characterization of risk |
![]() | ![]() | 9.4.7 Risk comparison |
![]() | ![]() | 9.4.8 Quantitative risk assessments |
![]() | ![]() | 9.4.9 Risk communication |
![]() | ![]() | 9.4.10 Risk management |
![]() | ![]() | 9.4.11 Guidelines for disaster management planning |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.4.11.1 Specification |
![]() | ![]() | 9.4.11.2 Plot plan |
![]() | ![]() | 9.4.11.3 Hazardous area classification |
![]() | ![]() | 9.4.11.4 P & I diagrams |
![]() | ![]() | 9.4.11.5 Storage of inflammable liquids |
![]() | ![]() | 9.4.11.6 Risk assessment |
![]() | ![]() | 9.5 Environmental health impact assessment |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.5.1 Need for EHIA |
![]() | ![]() | 9.5.2 Potential methodologies and approaches for addressing health impacts |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.5.2.1 Adapt EIA study activities |
![]() | ![]() | 9.5.2.2 Integrate health impacts into EIA |
![]() | ![]() | 9.5.2.3 Use a targeted approach |
![]() | ![]() | 9.5.2.4 Probabilistic risk assessment |
![]() | ![]() | 9.5.3 Proposed methodology |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.5.3.1 Determining the need for health impact assessment |
![]() | ![]() | 9.5.3.2 Identify health impacts |
![]() | ![]() | 9.5.3.3 Prediction of health impacts |
![]() | ![]() | 9.5.3.4 Interpreting health impacts |
![]() | ![]() | 9.5.3.5 Mitigation, monitoring, and reporting |
![]() | ![]() | 9.6 Social impact assessment |
![]() | ![]() | 9.6.1 What is SIA? Why SIA? |
![]() | ![]() | 9.6.2 Identifying social impact assessment variables |
![]() | ![]() | 9.6.3 Combining social impact assessment variables, project/policy stage, and setting |
![]() | ![]() | 9.6.4 Steps in the social impact assessment process |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.6.4.1 Public involvement |
![]() | ![]() | 9.6.4.2 Identification of alternatives |
![]() | ![]() | 9.6.4.3 Baseline conditions |
![]() | ![]() | 9.6.4.4 Scoping |
![]() | ![]() | 9.6.4.5 Projection of estimated effects |
![]() | ![]() | 9.6.4.6 Predicting response to impacts |
![]() | ![]() | 9.6.4.7 Indirect and cumulative impacts |
![]() | ![]() | 9.6.4.8 Change in alternatives |
![]() | ![]() | 9.6.4.9 Mitigation |
![]() | ![]() | 9.6.4.10 Monitoring |
![]() | ![]() | 9.6.5 Principles for SIA |
![]() | ![]() | 9.6.6 TOR for consultants |
![]() | ![]() | FURTHER READING |
![]() | ![]() | Annex 9.1: Case study for risk assessments |
![]() | ![]() | 10. Case studies to illustrate environmental impact assessment studies |
![]() | ![]() | Case study 10.1 Tongonan Geothermal Power Plant, Leyte, Philippines |
![]() | ![]() | Case study 10.2 Accelerated Mahaweli Development Programme |
![]() | ![]() | Case study 10.3 Tin Smelter Project in Thailand |
![]() | ![]() | Case study 10.4 Thai National Fertilizer Corporation Project |
![]() | ![]() | Case study 10.5 Map Ta Phut Port Project |
![]() | ![]() | Case study 10.6 EIA at Work: A Hydroelectric Project in Indonesia |
![]() | ![]() | Case study 10.7 The Greater Cairo Wastewater Project |
Several factors control the components of input, process, and output. They are not mutually exclusive and may act dependently or independently of each other. The factors listed below are described briefly in terms of their influence on system response to perturbation.
Boundaries. Spatial and temporal dimensions define the perimeter of a system and so distinguish it from the external environment. Boundaries determine whether inputs are foreign or internal to the system, and also establish margins to identify cross-boundary flows between systems. Cumulative effects assessments are generally characterized by broad temporal and spatial boundaries to incorporate the accumulation of environmental changes over long time frames (i.e., decades, centuries) and among spatial scales (i.e., local, regional, global).
Hierarchy. Each level of organization (e.g., individual, population, community, ecosystem) within a system operates with a degree of autonomy by functioning at time and space scales which differ from other levels in the hierarchy. Different levels of organization may be associated with varying types of system response. For example, a perturbation such as cultural eutrophication may eliminate or replace a single fish species (e.g., trout), but the aquatic system as a whole may remain intact. Thus, cumulative effects assessment investigates environmental changes within and among various levels of organization.
Organizational complexity. The degree of organizational complexity also influences the capacity of a system to respond to varying amounts of stress. Mature and complex organizations tend to resist cumulative effects characterized by small and short-term stress, but are more likely to succumb to severe and prolonged stress. Immature stages of organization are more likely to absorb or adapt to extreme events by rapid rebuilding of system structure and function. The response to cumulative effects differs between mature and rudimentary systems because as organizational complexity increases, the degree of specialization and connectivity among elements usually increases, and dynamic variability of system processes generally decreases.
Assimilative capacity. All environmental systems possess an assimilative capacity that regulates the amount of input a system can receive without degradation to a system component or process. A stress of high intensity and short duration may quickly exhaust the assimilative capacity of a system, resulting in sudden system response. A stress of low magnitude and frequent repetition may deplete assimilative capacity at a gradual rate. Low levels of repeated stress may result in increments of environmental change which accumulate over time and delay the system's response (i.e., time delay).
Thresholds. Accumulation of environmental change can result in a critical threshold. This is the point at which the intensity or duration of an input is sufficient to result in system response. Thresholds control the response function by defining the level at which a system can no longer resist or absorb inputs. Perturbations that exceed the critical threshold result in adaptation or breakdown. Analogous to assimilative capacity, critical thresholds may be reached quickly under high level of stress or incrementally under low stress levels.
Dynamic variability. Perturbation may force an environmental system or a system variable to function outside its normal operating range. Dynamic variability is a measure of the amplitude or degree of fluctuation beyond this range. It determines the capacity of a system to adapt to stress, whether extreme events or the accumulation of incremental environmental changes. Systems with high dynamic variability generally have a greater capacity to adapt to severe stress than systems with low variability.
Stability and resilience. Closely related to dynamic variability, the factors of stability and resilience also influence the manner in which systems respond to perturbation. Stability is characterized by a low degree of fluctuation around an equilibrium state and a rapid return to this state following stress. Resilience is distinguished by high variability and the ability of a system to maintain its structure and function. A system with low stability and high resilience is more likely to persist in the face of extreme stress than a system with high stability and low resilience. The latter can absorb incremental cumulative effects, but is vulnerable to change when thresholds are reached.
The influence of the control factors varies among the three components of input, process, and output so that some govern inputs (e.g., boundaries, assimilative capacity), others regulate processes (e.g., thresholds, dynamic variability), and still others determine the type of output response (e.g., hierarchy, organizational complexity, stability, and resilience).