Cover Image
close this bookThe Global Greenhouse Regime. Who Pays? (UNU, 1993, 382 p.)
close this folderPart I Measuring responsibility
close this folder1 Introduction
View the document(introduction...)
View the documentThe greenhouse effect
View the documentWhat was decided at Rio?
View the documentProtocol negotiating difficulties
View the documentKey issues for climate change negotiations
View the documentReferences

Protocol negotiating difficulties

Protocols to the Convention that deal with carbon dioxide, methane and other greenhouse gases must address and resolve much more difficult and complex issues than the Vienna Convention that covers ozone depleting gases. Relative to ozone depleting gases, for example, these gases are far more integral to lifestyles. Take, for example, methane emitting rice paddies in Indonesia, carbon dioxide spewing automobiles in cities such as Melbourne, or slash and burn agriculture in the highlands of Papua New Guinea. Moreover, the number of producers and consumers of these greenhouse gases is far greater than was the case for ozone destroying gases which created a trading cartel devoted to eliminating its major product. In comparison, climate change presents many novel negotiating difficulties to the international community (see Table 1.1) which have not been overcome in the Convention.

First, free riding on a greenhouse gas reduction regime is likely and attractive at all levels of human society - international, regional, national, and local. Second, a successful agreement will be based on measures that are in national self-interest, are normatively self-policing or are economically selfregulating. Third, greenhouse polluters are separated in time (crossgenerationally) and space (due to global mixing rates relative to mean residence time of greenhouse gases) so that liability is difficult to determine. Fifth, responsibility is clouded further by uneven regional climate impacts. Sixth, institutional change within states to implement greenhouse reductions will also be major compared with those entailed by past environmental agreements.

Finally, the economic costs of reducing greenhouse gases may be large, concentrated on existing interests at the national or subnational level, and may involve restrictions on existing resources rather than the allocation of new resources as in the Law of the Seas negotiations. These costs are given a great deal of attention in this book due to their importance in determining who should pay what to whom in a global greenhouse regime (see Chapters 5-13).

Table 1.1 Greenhouse gas negotiating novelties

1 The atmosphere is a true global commons precluding appropriation
2 The dispersed users of the atmosphere and the huge number of dispersed sources of GHGs mean that:

• monitoring is difficult
• free riding is easy
• self-policing is based on selfinterest

3 Liability for damages is difficult to allocate
4 There are big costs now, potent blocking coalitions versus uncertain benefits later, weak promoting coalitions
5 There are unconventional negotiating axes
6 Discounting of GHG damage is controversial
7 Prudence may delay validation of models
8 There is uncertainty about the benefits of GHG abatement due to frequent' rapid, and unforseeable changes in scientific assessment of climate change
9 Treatment of sinks 10 GHG equivalencies are controversial; GHGs are largely non-substitutes
GHG: greenhouse gases

Admittedly, the economic benefits of curtailing greenhouse gases may be also large because damages from climate change may be immense. But the realization of the benefits of avoiding climate change is uncertain, will likely come later rather than sooner, and will be distributed diffusely. Moreover, the benefits of using current emissions are widespread; and stakeholders in the status quo are well organized and powerful.

As was evident in the negotiations leading up to the Climate Change Convention (see Chapter 14), the size and ranking of greenhouse gas polluters (depending on how emissions are measured) cut across virtually all prior axes of interstate negotiation on security, economic, or environmental grounds. Simple targets make little sense as the energy intensities of economies vary internationally by an order of magnitude. Other simple criteria such as population, per capita GDP, fuel mix, energy reserves, and industrial patterns greatly complicate emission reduction or energy efficiency targets.

Determining the net emissions of greenhouse gases is also more difficult than for ozone depleting gases. Ozone depleting gases come from a relatively small number of human sources, and the gases remain in the atmosphere for hundreds of years before they decompose. In contrast, the major greenhouse gases have large natural sources and sinks, and have much shorter lifetimes in the atmosphere. States may claim that nationally controlled sinks for greenhouse gases should be subtracted from national emissions of greenhouse gases in determining emission quotas. Others may object strongly on grounds of scientific uncertainty (nearly a quarter of the carbon sink is currently unexplained by scientific models) or to the allocation of sink property rights. The concept of sink itself is a shifting sand on which to base target emissions and allocations (see Chapter 2).

The IPCC has already produced an index of heating equivalence across greenhouse gases and normalized to carbon dioxide, as was done in the Montreal Protocol across ozone depleting gases. However, many of the ozone depleting gases were close technical substitutes. It may be more difficult to apply the scientific equivalencies that might be used to evaluate control activities within an overall weighted emission quota for greenhouse gases than it was in the Montreal Protocol. Either a CO2-only or a separated, gas-by-gas protocol is therefore more likely under the Convention than an integrated, multiple-gas protocol implied by the ozone precedent.

Faced with such vast uncertainty, many scientists suggest that a 'no regrets' policy should be implemented now by incurring short run costs of emission reduction in anticipation of uncertain, long-run benefits. Incontrovertible validation of scientific simulations of climate change may not be available until (if the models are right) massive climate change may be irreversible. By reducing climate change, prudent behaviour now may deny positive evidence that the scientific models were correct. Relatedly, frequent, rapid, and unforeseeable changes may occur in scientific assessments of climate change, making negotiations on protocols to the Convention crisis-ridden and fraught with uncertainty.

In this book, the authors explore the implications of a 'no regress' policy in which emissions-reduction measures are chosen along a 'least-cost' pathway. These measures consist of energy efficiency projects and other actions that will have many other benefits even if present climate change concerns should turn out to be unwarranted. This policy option entails radical reductions in carbon emissions to about 50-60 per cent less than those in 1990. This stringent reduction goal therefore poses an unambiguous and measurable challenge to today's decision makers that must be met if they are to fulfil their obligations to future generations.