Cover Image
close this bookEnergy after Rio - Prospects and Challenges - Executive Summary (UNDP, 1997, 38 p.)
close this folder2. Energy and Major Global Issues
close this folder2.2 Energy and Environment
View the document2.2.1 Health
View the document2.2.2 Acidification
View the document2.2.3 Climate Change
View the document2.2.4 Land Degradation

2.2.4 Land Degradation

emissions will have to fall below the present level in order to stabilise the atmospheric concentration of CO2

Globally about 2000 million hectares of land have been degraded - an area equal to more than one third of all cropland and forested land. Some 300 million hectares are under such severe stress conditions that damage can be considered irreversible. If left unchecked, most of the remaining degraded land is likely to reach similar conditions. Land continues to be degraded at rates that are high by historical standards. The major causes of land degradation are deforestation, shifting cultivation practices in agriculture, over-grazing and the use of bush fires for short-term gains. Land degradation now affects the lives of hundreds of millions of people and is hampering the development of countries. Stopping land degradation is a high priority in many areas of the world.

Although the production of energy (including biomass energy or bioenergy) is not a major global cause of land degradation (although the impact may be large locally and regionally), energy can play a major role in stemming and reversing the problem. Specifically, the introduction of modern biomass energy systems (e.g., for electricity generation) would put a sufficiently high market price on biomass to make it profitable to restore many of the potentially productive degraded lands to “energy farm quality” so as to be able to serve lucrative biomass energy markets. Thus, the energy-land degradation nexus appears “more a cure than a disease.”