Cover Image
close this bookThe Global Greenhouse Regime. Who Pays? (UNU, 1993, 382 p.)
View the documentList of contributors
View the documentPreface
View the documentAcknowledgements
close this folderPart I Measuring responsibility
close this folder1 Introduction
View the document(introduction...)
View the documentThe greenhouse effect
View the documentWhat was decided at Rio?
View the documentProtocol negotiating difficulties
View the documentKey issues for climate change negotiations
View the documentReferences
close this folder2 The basics of greenhouse gas indices
View the document(introduction...)
View the documentApples and oranges
View the documentImplications
View the documentConclusion: indices do matter
View the documentReferences
close this folder3 Assessing emissions: five approaches compared
View the document(introduction...)
View the documentIntroduction
View the documentComprehensiveness compared
View the documentAccuracy by category
View the documentRegional and national emissions by source
View the documentConclusions
View the documentReferences
View the documentAppendix A: Estimates of greenhouse gas emissions
View the documentAppendix B: Calculating cumulative and current emissions
close this folder4 Who pays (to solve the problem and how much)?
View the document(introduction...)
View the documentIndices of allocation: a brief review
View the documentAccountability
View the documentEquity and efficiency
View the documentConclusion
View the documentReferences
close this folderPart II Resource transfers
close this folder5 North-South carbon abatement costs
View the document(introduction...)
View the documentClimate change convention
View the documentMethod overview
View the documentImplications for the South
View the documentNotes and references
close this folder6 North-South transfer
View the document(introduction...)
View the documentObligation to pay indices
View the documentRedistribution of incremental cost
View the documentBenchmarks
View the documentUN scale of payments
View the documentFinancing mechanisms
View the documentConclusion
View the documentNotes and references
close this folder7 Insuring against sea level rise
View the document(introduction...)
View the documentInsurability of losses
View the documentOil pollution
View the documentNuclear damage
View the documentImplications
View the documentThe insurance scheme proposed by AOSIS
View the documentThe Climate Change Convention
View the documentNotes and references
View the documentAppendix: Scheme proposed by AOSIS for inclusion in the Climate Change Convention
close this folderPart III National greenhouse gas reduction cost curves
close this folder8 Integrating ecology and economy in India
View the document(introduction...)
View the documentIntroduction
View the documentEmissions inventory
View the documentEnergy efficiency and fuel substitution
View the documentEmissions and sequestration from forest biomass
View the documentConclusions
View the documentReferences
close this folder9 Carbon abatement potential in West Africa
View the document(introduction...)
View the documentIntroduction
View the documentLong-term energy and carbon emissions scenarios
View the documentOptions for rational energy use and carbon conservation
View the documentEconomic opportunities for implementation
View the documentPolicy issues for the region
View the documentConclusions
View the documentReferences
close this folder10 Abatement of carbon dioxide emissions in Brazil
View the document(introduction...)
View the documentBrazil energy economy
View the documentEnergy subsector analyses
View the documentChanging land-use trends
View the documentConclusion
View the documentReferences
close this folder11 Thailand's demand side management initiative: a practical response to global warming
View the document(introduction...)
View the documentIntroduction
View the documentEnd-use energy efficiency policies
View the documentCosts and benefits of the DSM master plan
View the documentCO2 reductions from the DSM Plan
View the documentWhy should other developing countries adopt DSM?
View the documentThe role of the multilateral development banks
View the documentConclusions
View the documentReferences
close this folder12 Carbon abatement in Central and Eastern Europe and the Commonwealth of Independent States
View the document(introduction...)
View the documentEnergy-environment nexus
View the documentScenarios for the future
View the documentCountry results
View the documentPolicy implications
View the documentConclusion
View the documentReferences
close this folder13 Greenhouse gas emission abatement in Australia
View the document(introduction...)
View the documentAbatement of energy sector emissions
View the documentEconomic impact of abatement strategies
View the documentNon-energy emission abatement
View the documentAustralia's international role
View the documentCarbon taxes, externalities and other policy instruments
View the documentReferences
close this folderPart IV Conclusion
close this folder14 Constructing a global greenhouse regime
View the document(introduction...)
View the documentConditionality and additionality
View the documentTechnology transfer
View the documentMulti-pronged approach
View the documentImplementation procedures
View the documentRegional building blocks
View the documentNorth-'South' conflicts
View the documentConclusion
View the documentNotes and references
close this folderAppendix: The Climate change convention
View the documentIntroduction
View the documentBackground
View the documentClimate change convention
View the documentArticle 1. Definitions
View the documentArticle 2. Objective
View the documentArticle 3. Principles
View the documentArticle 4 Commitments
View the documentArticle 5. Research and systematic observation
View the documentArticle 6. Education, training and public awareness
View the documentArticle 7. Conference of the Parties
View the documentArticle 8. Secretariat
View the documentArticle 9. Subsidiary body for scientific and technological advice
View the documentArticle 10. Subsidiary Body for implementation
View the documentArticle 11. Financial mechanism
View the documentArticle 12. Communication of information related to implementation
View the documentArticle 13. Resolution of questions regarding implementation
View the documentArticle 14. Settlement of disputes
View the documentArticle 15. Amendments to the Convention
View the documentArticle 16. Adoption and amendment of annexes to the Convention
View the documentArticle 17. Protocols
View the documentArticle 18. Right to vote
View the documentArticle 19. Depositary
View the documentArticle 20. Signature
View the documentArticle 21. Interim arrangements
View the documentArticle 22. Ratification, acceptance, approval or accession
View the documentArticle 23. Entry into force
View the documentArticle 24. Reservations
View the documentArticle 25. Withdrawal
View the documentArticle 26. Authentic texts

Comprehensiveness compared

Cumulative CO2, energy only

As it takes many decades for CO2 to be removed from the atmosphere, the increase in concentration of CO2 from pre-industrial levels is largely due to CO2 emitted in past decades. In this respect, historical CO2 emissions are much more relevant to the level of committed atmospheric warming than are current emissions. Emissions from past energy use, however, make up a smaller portion of total CO2 release than today's fossil fuel emissions because CO2 from land clearing may have been roughly comparable with fossil fuel related CO2 until the middle of this century (see Figure 3.1). Emissions from fossil fuel combustion since the start of the industrial revolution are estimated to be 175 to 215 gigatonnes (GT) of carbon (C), representing between about 55 and 70 per cent of total anthropogenic CO2 release (IPCC 1990). Contributions to warming, however, are considerably lower because CO2 is but one of the gases contributing to the heating effect. Considering both the change in fossil fuel emissions over time (Keeling 1973; Marland et al. 1990) and the estimated contribution of CO2 to total warming (IPCC 1990), it is calculated that cumulative CO2 emissions from energy may contribute about 40 per cent of the warming effect of the trace gases now in the atmosphere.


Figure 3.1 Historic CO2 emissions compared

Cumulative CO2, energy and biota

About 60 per cent of the warming effect of anthropogenic greenhouse gas emissions in the atmosphere is thought to be from CO2 or cumulative CO2 emissions from energy and biota (IPCC 1990).

CO2, energy only (current)

Although current CO2 emissions from energy is the least comprehensive of the five categories considered here, CO2 from energy alone is the major warming source from current emissions. Emissions from energy consumption contribute about 65 per cent of the expected warming effect of the trace gases now being emitted, if halocarbons are excluded from the total. This CO2 share of warming reflects the use of the IPCC's GWP for a 100 year period, published in 1992 (IPCC 1992). The estimated warming is only 60 per cent of the total if the IPCC's 1990 GWPs are employed and no doubt will change as the IPCC revises in the future.

Partial CH4 and CO2

This category, as defined above, covers about 80 per cent of the warming effect of current greenhouse gas emissions excluding halocarbons. Halocarbons have been omitted from the current emissions total because they are already being phased out under the Montreal Protocol.

Comprehensive emissions

The comprehensive approach to emission measurement theoretically represents 100 per cent of current greenhouse gas emissions.

The influence of time horizon

The relative comprehensiveness of the energy and modified comprehensive approaches varies considerably depending on how much of the heating effect of the different gases is taken into account. In Figure 3.2, current emissions are compared using three CO2 equivalence indices including the potential heating effect of the gases over a 20, 100, and 500 year time horizon. In the 20 year time horizon, CO2 from energy contributes only about 45 per cent of the total heating effect because the index based on the shorter time horizon does not capture the ultimate heating effect of CO2, which continues many decades beyond the atmospheric residence time of CH4, the next most important greenhouse gas. Accordingly, the proportion of the total heating contribution due to CO2 from energy is much higher about 70 per cent - over the longer time horizon.


Figure 3.2 Contributions to total emissions by source