Cover Image
close this bookThe Global Greenhouse Regime. Who Pays? (UNU, 1993, 382 p.)
View the documentList of contributors
View the documentPreface
View the documentAcknowledgements
close this folderPart I Measuring responsibility
close this folder1 Introduction
View the document(introduction...)
View the documentThe greenhouse effect
View the documentWhat was decided at Rio?
View the documentProtocol negotiating difficulties
View the documentKey issues for climate change negotiations
View the documentReferences
close this folder2 The basics of greenhouse gas indices
View the document(introduction...)
View the documentApples and oranges
View the documentImplications
View the documentConclusion: indices do matter
View the documentReferences
close this folder3 Assessing emissions: five approaches compared
View the document(introduction...)
View the documentIntroduction
View the documentComprehensiveness compared
View the documentAccuracy by category
View the documentRegional and national emissions by source
View the documentConclusions
View the documentReferences
View the documentAppendix A: Estimates of greenhouse gas emissions
View the documentAppendix B: Calculating cumulative and current emissions
close this folder4 Who pays (to solve the problem and how much)?
View the document(introduction...)
View the documentIndices of allocation: a brief review
View the documentAccountability
View the documentEquity and efficiency
View the documentConclusion
View the documentReferences
close this folderPart II Resource transfers
close this folder5 North-South carbon abatement costs
View the document(introduction...)
View the documentClimate change convention
View the documentMethod overview
View the documentImplications for the South
View the documentNotes and references
close this folder6 North-South transfer
View the document(introduction...)
View the documentObligation to pay indices
View the documentRedistribution of incremental cost
View the documentBenchmarks
View the documentUN scale of payments
View the documentFinancing mechanisms
View the documentConclusion
View the documentNotes and references
close this folder7 Insuring against sea level rise
View the document(introduction...)
View the documentInsurability of losses
View the documentOil pollution
View the documentNuclear damage
View the documentImplications
View the documentThe insurance scheme proposed by AOSIS
View the documentThe Climate Change Convention
View the documentNotes and references
View the documentAppendix: Scheme proposed by AOSIS for inclusion in the Climate Change Convention
close this folderPart III National greenhouse gas reduction cost curves
close this folder8 Integrating ecology and economy in India
View the document(introduction...)
View the documentIntroduction
View the documentEmissions inventory
View the documentEnergy efficiency and fuel substitution
View the documentEmissions and sequestration from forest biomass
View the documentConclusions
View the documentReferences
close this folder9 Carbon abatement potential in West Africa
View the document(introduction...)
View the documentIntroduction
View the documentLong-term energy and carbon emissions scenarios
View the documentOptions for rational energy use and carbon conservation
View the documentEconomic opportunities for implementation
View the documentPolicy issues for the region
View the documentConclusions
View the documentReferences
close this folder10 Abatement of carbon dioxide emissions in Brazil
View the document(introduction...)
View the documentBrazil energy economy
View the documentEnergy subsector analyses
View the documentChanging land-use trends
View the documentConclusion
View the documentReferences
close this folder11 Thailand's demand side management initiative: a practical response to global warming
View the document(introduction...)
View the documentIntroduction
View the documentEnd-use energy efficiency policies
View the documentCosts and benefits of the DSM master plan
View the documentCO2 reductions from the DSM Plan
View the documentWhy should other developing countries adopt DSM?
View the documentThe role of the multilateral development banks
View the documentConclusions
View the documentReferences
close this folder12 Carbon abatement in Central and Eastern Europe and the Commonwealth of Independent States
View the document(introduction...)
View the documentEnergy-environment nexus
View the documentScenarios for the future
View the documentCountry results
View the documentPolicy implications
View the documentConclusion
View the documentReferences
close this folder13 Greenhouse gas emission abatement in Australia
View the document(introduction...)
View the documentAbatement of energy sector emissions
View the documentEconomic impact of abatement strategies
View the documentNon-energy emission abatement
View the documentAustralia's international role
View the documentCarbon taxes, externalities and other policy instruments
View the documentReferences
close this folderPart IV Conclusion
close this folder14 Constructing a global greenhouse regime
View the document(introduction...)
View the documentConditionality and additionality
View the documentTechnology transfer
View the documentMulti-pronged approach
View the documentImplementation procedures
View the documentRegional building blocks
View the documentNorth-'South' conflicts
View the documentConclusion
View the documentNotes and references
close this folderAppendix: The Climate change convention
View the documentIntroduction
View the documentBackground
View the documentClimate change convention
View the documentArticle 1. Definitions
View the documentArticle 2. Objective
View the documentArticle 3. Principles
View the documentArticle 4 Commitments
View the documentArticle 5. Research and systematic observation
View the documentArticle 6. Education, training and public awareness
View the documentArticle 7. Conference of the Parties
View the documentArticle 8. Secretariat
View the documentArticle 9. Subsidiary body for scientific and technological advice
View the documentArticle 10. Subsidiary Body for implementation
View the documentArticle 11. Financial mechanism
View the documentArticle 12. Communication of information related to implementation
View the documentArticle 13. Resolution of questions regarding implementation
View the documentArticle 14. Settlement of disputes
View the documentArticle 15. Amendments to the Convention
View the documentArticle 16. Adoption and amendment of annexes to the Convention
View the documentArticle 17. Protocols
View the documentArticle 18. Right to vote
View the documentArticle 19. Depositary
View the documentArticle 20. Signature
View the documentArticle 21. Interim arrangements
View the documentArticle 22. Ratification, acceptance, approval or accession
View the documentArticle 23. Entry into force
View the documentArticle 24. Reservations
View the documentArticle 25. Withdrawal
View the documentArticle 26. Authentic texts

Conclusion

The analysis of CO2 evolution and abatement measures is still incipient in Brazil both in regard to energy and to land-use change. The creation of credible, systematic and internationally comparable 'abasement cost' curves for Brazil is still not possible. As a consequence there is as yet little basis on which to agree on specific CO2 limitation targets. The problem is exacerbated by the wide range of uncertainty surrounding the prospects for economic growth. The work briefly described here is part of an effort to better understand the potential and economics of CO; abatement. In Figure 10.1, we summarize the tentative results of this study for the costs and abatement potential of measures to reduce fossil energy emissions. We identified about 13.7 MTC of technologically feasible and economically justified carbon abatement, relative to the SNE 'tendencies' scenario in the year 2000. This reduction potential amounts to about 16 per cent of the SNE reference projection for carbon emissions in that year. We did not allow for the more pervasive energy and carbon reducing effects of technological innovation in all end-using sectors; nor did we include the impact of shifts in the sectoral composition of the economy on our estimate of energy and carbon conservation. Moreover, as our bottom-up calculation is extended to other sectors, we expect to increase substantially the size of the carbon reduction potential above 13.7 MTC.


Figure 10.1 Cumulative annual carbon emissions avoided by 2000 for technology improvements in Brazil

Although the quantitative analysis is incomplete and preliminary, it permits some observations which are relevant for policy. It appears that substantial savings in CO2 emissions can be achieved at 'negative cost' or very low cost (say, less than US$10/TC), both in energy and land-use change. These savings should be substantially cheaper than those of many measures being considered by the industrialized countries. However, the fact that these are 'no regress' sayings does not mean that they are easy to achieve. This fact is relevant for a possible policy of international resource transfers, which should be very attentive to 'no regrets' opportunities in developing countries.

In Brazil's energy sector, the major 'no regress' sayings involve increasing energy efficiency in all consuming sectors. As explained earlier, conditions and policies favouring greater energy efficiency are also likely to favour, and are associated with, higher medium term economic growth (low inflation, correct price signals, investment in modernizing processes and products, competition, etc). Energy efficiency itself should directly contribute to improved overall productivity and thus to economic growth.

With regard to land-use change, we argue that the trade-off between Amazonia's economic growth and reducing deforestation is not so acute as some suggest. However, a strategy is needed urgently to change the economic dynamics of Amazonia's frontier regions. The case of Amazonia also highlights the need for cost-benefit analysis to explicitly consider who pays the costs and who receives the benefits of policy changes aimed at conserving carbon.

The medium term potential for relatively low cost CO2 abatement is probably much larger for land-use change than in the energy sector. This judgement does not mean that energy efficiency should be ignored, however. Many measures to reduce energy-related emissions are as cost effective, or even more so, than those to reduce emissions from land-use change. Moreover, energy is fast becoming relatively more important. Finally, as we have observed, energy policy can influence future land-use, especially in the Amazon region.

Using the technologies discussed in this chapter, the total amount of carbon abatement is approximately 13.5 million TC. In Figure 10.1, we plotted a total amount of 9.3 million TC, since we excluded the 4.2 million TC due to the use of alcohol at the existing output (as shown in Table 10.10) because we did not know the net cost associated with this technology. The opportunities identified in this chapter are not the complete picture. Other technologies exist, and with their full inclusion on the demand side of the Brazilian energy matrix, probably more CO2 abatement than is forecasted in the official alternative scenario can be achieved.