![]() | The Global Greenhouse Regime. Who Pays? (UNU, 1993, 382 p.) |
![]() | ![]() | List of contributors |
![]() | ![]() | Preface |
![]() | ![]() | Acknowledgements |
![]() | ![]() | Part I Measuring responsibility |
![]() | ![]() | 1 Introduction |
![]() | ![]() | (introduction...) |
![]() | ![]() | The greenhouse effect |
![]() | ![]() | What was decided at Rio? |
![]() | ![]() | Protocol negotiating difficulties |
![]() | ![]() | Key issues for climate change negotiations |
![]() | ![]() | References |
![]() | ![]() | 2 The basics of greenhouse gas indices |
![]() | ![]() | (introduction...) |
![]() | ![]() | Apples and oranges |
![]() | ![]() | Implications |
![]() | ![]() | Conclusion: indices do matter |
![]() | ![]() | References |
![]() | ![]() | 3 Assessing emissions: five approaches compared |
![]() | ![]() | (introduction...) |
![]() | ![]() | Introduction |
![]() | ![]() | Comprehensiveness compared |
![]() | ![]() | Accuracy by category |
![]() | ![]() | Regional and national emissions by source |
![]() | ![]() | Conclusions |
![]() | ![]() | References |
![]() | ![]() | Appendix A: Estimates of greenhouse gas emissions |
![]() | ![]() | Appendix B: Calculating cumulative and current emissions |
![]() | ![]() | 4 Who pays (to solve the problem and how much)? |
![]() | ![]() | (introduction...) |
![]() | ![]() | Indices of allocation: a brief review |
![]() | ![]() | Accountability |
![]() | ![]() | Equity and efficiency |
![]() | ![]() | Conclusion |
![]() | ![]() | References |
![]() | ![]() | Part II Resource transfers |
![]() | ![]() | 5 North-South carbon abatement costs |
![]() | ![]() | (introduction...) |
![]() | ![]() | Climate change convention |
![]() | ![]() | Method overview |
![]() | ![]() | Implications for the South |
![]() | ![]() | Notes and references |
![]() | ![]() | 6 North-South transfer |
![]() | ![]() | (introduction...) |
![]() | ![]() | Obligation to pay indices |
![]() | ![]() | Redistribution of incremental cost |
![]() | ![]() | Benchmarks |
![]() | ![]() | UN scale of payments |
![]() | ![]() | Financing mechanisms |
![]() | ![]() | Conclusion |
![]() | ![]() | Notes and references |
![]() | ![]() | 7 Insuring against sea level rise |
![]() | ![]() | (introduction...) |
![]() | ![]() | Insurability of losses |
![]() | ![]() | Oil pollution |
![]() | ![]() | Nuclear damage |
![]() | ![]() | Implications |
![]() | ![]() | The insurance scheme proposed by AOSIS |
![]() | ![]() | The Climate Change Convention |
![]() | ![]() | Notes and references |
![]() | ![]() | Appendix: Scheme proposed by AOSIS for inclusion in the Climate Change Convention |
![]() | ![]() | Part III National greenhouse gas reduction cost curves |
![]() | ![]() | 8 Integrating ecology and economy in India |
![]() | ![]() | (introduction...) |
![]() | ![]() | Introduction |
![]() | ![]() | Emissions inventory |
![]() | ![]() | Energy efficiency and fuel substitution |
![]() | ![]() | Emissions and sequestration from forest biomass |
![]() | ![]() | Conclusions |
![]() | ![]() | References |
![]() | ![]() | 9 Carbon abatement potential in West Africa |
![]() | ![]() | (introduction...) |
![]() | ![]() | Introduction |
![]() | ![]() | Long-term energy and carbon emissions scenarios |
![]() | ![]() | Options for rational energy use and carbon conservation |
![]() | ![]() | Economic opportunities for implementation |
![]() | ![]() | Policy issues for the region |
![]() | ![]() | Conclusions |
![]() | ![]() | References |
![]() | ![]() | 10 Abatement of carbon dioxide emissions in Brazil |
![]() | ![]() | (introduction...) |
![]() | ![]() | Brazil energy economy |
![]() | ![]() | Energy subsector analyses |
![]() | ![]() | Changing land-use trends |
![]() | ![]() | Conclusion |
![]() | ![]() | References |
![]() | ![]() | 11 Thailand's demand side management initiative: a practical response to global warming |
![]() | ![]() | (introduction...) |
![]() | ![]() | Introduction |
![]() | ![]() | End-use energy efficiency policies |
![]() | ![]() | Costs and benefits of the DSM master plan |
![]() | ![]() | CO2 reductions from the DSM Plan |
![]() | ![]() | Why should other developing countries adopt DSM? |
![]() | ![]() | The role of the multilateral development banks |
![]() | ![]() | Conclusions |
![]() | ![]() | References |
![]() | ![]() | 12 Carbon abatement in Central and Eastern Europe and the Commonwealth of Independent States |
![]() | ![]() | (introduction...) |
![]() | ![]() | Energy-environment nexus |
![]() | ![]() | Scenarios for the future |
![]() | ![]() | Country results |
![]() | ![]() | Policy implications |
![]() | ![]() | Conclusion |
![]() | ![]() | References |
![]() | ![]() | 13 Greenhouse gas emission abatement in Australia |
![]() | ![]() | (introduction...) |
![]() | ![]() | Abatement of energy sector emissions |
![]() | ![]() | Economic impact of abatement strategies |
![]() | ![]() | Non-energy emission abatement |
![]() | ![]() | Australia's international role |
![]() | ![]() | Carbon taxes, externalities and other policy instruments |
![]() | ![]() | References |
![]() | ![]() | Part IV Conclusion |
![]() | ![]() | 14 Constructing a global greenhouse regime |
![]() | ![]() | (introduction...) |
![]() | ![]() | Conditionality and additionality |
![]() | ![]() | Technology transfer |
![]() | ![]() | Multi-pronged approach |
![]() | ![]() | Implementation procedures |
![]() | ![]() | Regional building blocks |
![]() | ![]() | North-'South' conflicts |
![]() | ![]() | Conclusion |
![]() | ![]() | Notes and references |
![]() | ![]() | Appendix: The Climate change convention |
![]() | ![]() | Introduction |
![]() | ![]() | Background |
![]() | ![]() | Climate change convention |
![]() | ![]() | Article 1. Definitions |
![]() | ![]() | Article 2. Objective |
![]() | ![]() | Article 3. Principles |
![]() | ![]() | Article 4 Commitments |
![]() | ![]() | Article 5. Research and systematic observation |
![]() | ![]() | Article 6. Education, training and public awareness |
![]() | ![]() | Article 7. Conference of the Parties |
![]() | ![]() | Article 8. Secretariat |
![]() | ![]() | Article 9. Subsidiary body for scientific and technological advice |
![]() | ![]() | Article 10. Subsidiary Body for implementation |
![]() | ![]() | Article 11. Financial mechanism |
![]() | ![]() | Article 12. Communication of information related to implementation |
![]() | ![]() | Article 13. Resolution of questions regarding implementation |
![]() | ![]() | Article 14. Settlement of disputes |
![]() | ![]() | Article 15. Amendments to the Convention |
![]() | ![]() | Article 16. Adoption and amendment of annexes to the Convention |
![]() | ![]() | Article 17. Protocols |
![]() | ![]() | Article 18. Right to vote |
![]() | ![]() | Article 19. Depositary |
![]() | ![]() | Article 20. Signature |
![]() | ![]() | Article 21. Interim arrangements |
![]() | ![]() | Article 22. Ratification, acceptance, approval or accession |
![]() | ![]() | Article 23. Entry into force |
![]() | ![]() | Article 24. Reservations |
![]() | ![]() | Article 25. Withdrawal |
![]() | ![]() | Article 26. Authentic texts |
1 T Fleischer and J Vargha, eds, 'The Most Important Tasks of Environmental Protection in Hungary,' ISTER, East European Environment Research, Budapest, 1989
2 S Sitnicki, et al., Chapter 3: 'Poland,' in Carbon Emissions Control Strategies: Case Studies in International Cooperation, William U Chandler, ed.
3 This model is the 'EPA Energy End-Use Model' developed by Irving Mintzer, Projecting Future Energy Demand in Industrialised Countries: An End-Use Oriented Approach, World Resources Institute, October 1988, and modified by W U Chandler of Battelle, Pacific Northwest Laboratories for the US Environmental Protection Agency with the assistance of Stanislav Kolar, PNL, and the advice of Jean-Charles Hourcade and Richard Baron, CIRED, Paris, France
4 The studies on which this chapter is based are: William U Chandler, Stanislav Kolar, Adrian Gheorghe, and Stanislaw Sitnicki, 'Climate Change and Energy Policy in Eastern Europe: Two Scenarios for the Future,' Energy, Vol. 16, No. 111 12, pp 1423-1435, Pergamon Press, 1991; S Sitnicki, et al., Chapter 3: 'Poland,' in Carbon Emissions Control Strategies: Case Studies in International Cooperation, William U Chandler, ea., World Wildlife Fund and The Conservation Foundation, Washington, DC, 1990; Alexei A Makarov and Igor Bashmakov, Carbon Emissions Control Strategies: Case Studies in International Cooperation, Chapter 2: 'The Soviet Union,' in William U Chandler, ea., World Wildlife Fund and The Conservation Foundation, Washington, DC, 1990; TamJay, Chapter 4: 'Hungary,' in Carbon Emissions Control Strategies: Case Studies in International Cooperation, William U Chandler, ea., World Wildlife Fund and The Conservation Foundation, Washington, DC, 1990; Marie KostvJiri Suk and Stanislav Kolar, Reducing Greenhouse Gas Emissions in Czechoslovakia, Pacific Northwest Laboratory, Richland, Washington, December 1991
5 This model was developed by the author
6 M Henel and B Cabicar, Rentabilita statnich prostredku, vlozenych na podporu vyssiho zhodnocovani paliv a energie narodnim hospodarstvi - ekonomicke zduvodneni a oblasti pusobnosti, VUPEK (Research Institute of the Fuels and Energy Complex), Prague, September 1991
7 S Sitnicki, et al., Carbon Emissions, op. cit. (endnote 4)
8 For data, see, variously, Economic Commission on Europe, An Energy Efficient Future, New York: United Nations Economic Commission on Europe, 1983; D Shonak, et al., Transportation Energy Data Book, Oak Ridge: Oak Ridge National Laboratory, 1989
9 Opening remarks, US Electric Power Technologies Conference, Prague, Czechoslovakia, July 7, 1992
10 For data see, Central Intelligence Agency, Handbook of Economic Statistics, 1989, Directorate of Intelligence, Washington, DC, September 1989
11 See references in note 4 above
12 Communications with Jiri Suk, Forecasting Institute, Czechoslovak Academy of Sciences, Prague, Czechoslovakia, April 1990 13 See references in note 4 above