![]() | The Global Greenhouse Regime. Who Pays? (UNU, 1993, 382 p.) |
![]() | ![]() | List of contributors |
![]() | ![]() | Preface |
![]() | ![]() | Acknowledgements |
![]() | ![]() | Part I Measuring responsibility |
![]() | ![]() | 1 Introduction |
![]() | ![]() | (introduction...) |
![]() | ![]() | The greenhouse effect |
![]() | ![]() | What was decided at Rio? |
![]() | ![]() | Protocol negotiating difficulties |
![]() | ![]() | Key issues for climate change negotiations |
![]() | ![]() | References |
![]() | ![]() | 2 The basics of greenhouse gas indices |
![]() | ![]() | (introduction...) |
![]() | ![]() | Apples and oranges |
![]() | ![]() | Implications |
![]() | ![]() | Conclusion: indices do matter |
![]() | ![]() | References |
![]() | ![]() | 3 Assessing emissions: five approaches compared |
![]() | ![]() | (introduction...) |
![]() | ![]() | Introduction |
![]() | ![]() | Comprehensiveness compared |
![]() | ![]() | Accuracy by category |
![]() | ![]() | Regional and national emissions by source |
![]() | ![]() | Conclusions |
![]() | ![]() | References |
![]() | ![]() | Appendix A: Estimates of greenhouse gas emissions |
![]() | ![]() | Appendix B: Calculating cumulative and current emissions |
![]() | ![]() | 4 Who pays (to solve the problem and how much)? |
![]() | ![]() | (introduction...) |
![]() | ![]() | Indices of allocation: a brief review |
![]() | ![]() | Accountability |
![]() | ![]() | Equity and efficiency |
![]() | ![]() | Conclusion |
![]() | ![]() | References |
![]() | ![]() | Part II Resource transfers |
![]() | ![]() | 5 North-South carbon abatement costs |
![]() | ![]() | (introduction...) |
![]() | ![]() | Climate change convention |
![]() | ![]() | Method overview |
![]() | ![]() | Implications for the South |
![]() | ![]() | Notes and references |
![]() | ![]() | 6 North-South transfer |
![]() | ![]() | (introduction...) |
![]() | ![]() | Obligation to pay indices |
![]() | ![]() | Redistribution of incremental cost |
![]() | ![]() | Benchmarks |
![]() | ![]() | UN scale of payments |
![]() | ![]() | Financing mechanisms |
![]() | ![]() | Conclusion |
![]() | ![]() | Notes and references |
![]() | ![]() | 7 Insuring against sea level rise |
![]() | ![]() | (introduction...) |
![]() | ![]() | Insurability of losses |
![]() | ![]() | Oil pollution |
![]() | ![]() | Nuclear damage |
![]() | ![]() | Implications |
![]() | ![]() | The insurance scheme proposed by AOSIS |
![]() | ![]() | The Climate Change Convention |
![]() | ![]() | Notes and references |
![]() | ![]() | Appendix: Scheme proposed by AOSIS for inclusion in the Climate Change Convention |
![]() | ![]() | Part III National greenhouse gas reduction cost curves |
![]() | ![]() | 8 Integrating ecology and economy in India |
![]() | ![]() | (introduction...) |
![]() | ![]() | Introduction |
![]() | ![]() | Emissions inventory |
![]() | ![]() | Energy efficiency and fuel substitution |
![]() | ![]() | Emissions and sequestration from forest biomass |
![]() | ![]() | Conclusions |
![]() | ![]() | References |
![]() | ![]() | 9 Carbon abatement potential in West Africa |
![]() | ![]() | (introduction...) |
![]() | ![]() | Introduction |
![]() | ![]() | Long-term energy and carbon emissions scenarios |
![]() | ![]() | Options for rational energy use and carbon conservation |
![]() | ![]() | Economic opportunities for implementation |
![]() | ![]() | Policy issues for the region |
![]() | ![]() | Conclusions |
![]() | ![]() | References |
![]() | ![]() | 10 Abatement of carbon dioxide emissions in Brazil |
![]() | ![]() | (introduction...) |
![]() | ![]() | Brazil energy economy |
![]() | ![]() | Energy subsector analyses |
![]() | ![]() | Changing land-use trends |
![]() | ![]() | Conclusion |
![]() | ![]() | References |
![]() | ![]() | 11 Thailand's demand side management initiative: a practical response to global warming |
![]() | ![]() | (introduction...) |
![]() | ![]() | Introduction |
![]() | ![]() | End-use energy efficiency policies |
![]() | ![]() | Costs and benefits of the DSM master plan |
![]() | ![]() | CO2 reductions from the DSM Plan |
![]() | ![]() | Why should other developing countries adopt DSM? |
![]() | ![]() | The role of the multilateral development banks |
![]() | ![]() | Conclusions |
![]() | ![]() | References |
![]() | ![]() | 12 Carbon abatement in Central and Eastern Europe and the Commonwealth of Independent States |
![]() | ![]() | (introduction...) |
![]() | ![]() | Energy-environment nexus |
![]() | ![]() | Scenarios for the future |
![]() | ![]() | Country results |
![]() | ![]() | Policy implications |
![]() | ![]() | Conclusion |
![]() | ![]() | References |
![]() | ![]() | 13 Greenhouse gas emission abatement in Australia |
![]() | ![]() | (introduction...) |
![]() | ![]() | Abatement of energy sector emissions |
![]() | ![]() | Economic impact of abatement strategies |
![]() | ![]() | Non-energy emission abatement |
![]() | ![]() | Australia's international role |
![]() | ![]() | Carbon taxes, externalities and other policy instruments |
![]() | ![]() | References |
![]() | ![]() | Part IV Conclusion |
![]() | ![]() | 14 Constructing a global greenhouse regime |
![]() | ![]() | (introduction...) |
![]() | ![]() | Conditionality and additionality |
![]() | ![]() | Technology transfer |
![]() | ![]() | Multi-pronged approach |
![]() | ![]() | Implementation procedures |
![]() | ![]() | Regional building blocks |
![]() | ![]() | North-'South' conflicts |
![]() | ![]() | Conclusion |
![]() | ![]() | Notes and references |
![]() | ![]() | Appendix: The Climate change convention |
![]() | ![]() | Introduction |
![]() | ![]() | Background |
![]() | ![]() | Climate change convention |
![]() | ![]() | Article 1. Definitions |
![]() | ![]() | Article 2. Objective |
![]() | ![]() | Article 3. Principles |
![]() | ![]() | Article 4 Commitments |
![]() | ![]() | Article 5. Research and systematic observation |
![]() | ![]() | Article 6. Education, training and public awareness |
![]() | ![]() | Article 7. Conference of the Parties |
![]() | ![]() | Article 8. Secretariat |
![]() | ![]() | Article 9. Subsidiary body for scientific and technological advice |
![]() | ![]() | Article 10. Subsidiary Body for implementation |
![]() | ![]() | Article 11. Financial mechanism |
![]() | ![]() | Article 12. Communication of information related to implementation |
![]() | ![]() | Article 13. Resolution of questions regarding implementation |
![]() | ![]() | Article 14. Settlement of disputes |
![]() | ![]() | Article 15. Amendments to the Convention |
![]() | ![]() | Article 16. Adoption and amendment of annexes to the Convention |
![]() | ![]() | Article 17. Protocols |
![]() | ![]() | Article 18. Right to vote |
![]() | ![]() | Article 19. Depositary |
![]() | ![]() | Article 20. Signature |
![]() | ![]() | Article 21. Interim arrangements |
![]() | ![]() | Article 22. Ratification, acceptance, approval or accession |
![]() | ![]() | Article 23. Entry into force |
![]() | ![]() | Article 24. Reservations |
![]() | ![]() | Article 25. Withdrawal |
![]() | ![]() | Article 26. Authentic texts |
Abatement of energy sector emissions
Economic
impact of abatement strategies
Non-energy emission
abatement
Australia's international role
Carbon taxes, externalities and other policy instruments
References
Hugh Saddler
Greenhouse gas emissions have been at the forefront of public policy debate in Australia for over three years. In October 1990 the federal government adopted an 'interim planning target' - to reduce emissions of greenhouse gases to levels 20 per cent below 1988 emissions by 2005. The reduction of 20 per cent relative to 1988 levels was first proposed at an international conference held in Toronto, Canada in 1988; it is referred to as the Toronto target in this chapter.
Gases controlled by the Montreal Protocol on Substances that Deplete the Ozone Layer, that is, chlorofluorocarbons and related compounds, were not included, but the government had previously announced that the use of CFCs would be eliminated by 1995. The undertaking with respect to other greenhouse gases was subject to the important qualification that it would not proceed with measures which have net adverse economic impacts nationally or on Australia's trade competitiveness.
The eight Australian state and territory governments have important policy powers relating in particular to the electricity and gas industries and to the control of pollution. Their concurrence and participation is virtually a prerequisite for the realization of the federal target. The eight governments have agreed to participate with the federal government in the development of a national greenhouse response strategy. A draft strategy document was released for public comment in June 1992.
Although it is normally viewed as a developed country, Australia's economy is heavily dependent on exports of raw and partly processed commodities. Among the most important Australian exports are coal, liquefied natural gas (LNG), and alumina and aluminium metal smelted with coal-fired electricity. Consideration of greenhouse response strategies has therefore been strongly influenced by concerns about the possible effects of any abatement measures on Australia's international competitiveness as a supplier of fossil fuel intensive commodities.
A steady stream of reports and studies from government, business and nongovernmental organizations has provided the material for an enthusiastic public policy debate. Many of the reports have sought to estimate the costs to the Australian economy of reducing carbon dioxide emissions by changes in energy supply and use, focusing in particular on the costs of meeting the Toronto target. This narrow emphasis on a single goal reflects partly the concerns of special interest groups who fear the impact of achieving the target on their activities. Most studies have sought to estimate the macro-economic effects of a carbon tax on fossil fuel use that would suppress demand for fossil fuels in 2005 to the Toronto target level. The narrow focus of so many of these studies has had two unfortunate effects. First, it has encouraged an 'all or none' view of the desirability of implementing emission reduction policies. And second, it has led to neglect of policy instruments other than a carbon tax.
Nevertheless, the studies have greatly improved our understanding of the workings of the Australian energy system and its interaction with the wider economy. Very much less is known about non-energy related sources of greenhouse gas emissions, which are the principal sources of the other important anthropogenic greenhouse gases such as methane and nitrous oxide.
In this chapter, I examine the cost and scope of emission abatement measures available in Australia. I also review estimates of the effect on the Australian economy of achieving various levels of abatement.