Cover Image
close this bookThe Global Greenhouse Regime. Who Pays? (UNU, 1993, 382 p.)
View the documentList of contributors
View the documentPreface
View the documentAcknowledgements
close this folderPart I Measuring responsibility
close this folder1 Introduction
View the document(introduction...)
View the documentThe greenhouse effect
View the documentWhat was decided at Rio?
View the documentProtocol negotiating difficulties
View the documentKey issues for climate change negotiations
View the documentReferences
close this folder2 The basics of greenhouse gas indices
View the document(introduction...)
View the documentApples and oranges
View the documentImplications
View the documentConclusion: indices do matter
View the documentReferences
close this folder3 Assessing emissions: five approaches compared
View the document(introduction...)
View the documentIntroduction
View the documentComprehensiveness compared
View the documentAccuracy by category
View the documentRegional and national emissions by source
View the documentConclusions
View the documentReferences
View the documentAppendix A: Estimates of greenhouse gas emissions
View the documentAppendix B: Calculating cumulative and current emissions
close this folder4 Who pays (to solve the problem and how much)?
View the document(introduction...)
View the documentIndices of allocation: a brief review
View the documentAccountability
View the documentEquity and efficiency
View the documentConclusion
View the documentReferences
close this folderPart II Resource transfers
close this folder5 North-South carbon abatement costs
View the document(introduction...)
View the documentClimate change convention
View the documentMethod overview
View the documentImplications for the South
View the documentNotes and references
close this folder6 North-South transfer
View the document(introduction...)
View the documentObligation to pay indices
View the documentRedistribution of incremental cost
View the documentBenchmarks
View the documentUN scale of payments
View the documentFinancing mechanisms
View the documentConclusion
View the documentNotes and references
close this folder7 Insuring against sea level rise
View the document(introduction...)
View the documentInsurability of losses
View the documentOil pollution
View the documentNuclear damage
View the documentImplications
View the documentThe insurance scheme proposed by AOSIS
View the documentThe Climate Change Convention
View the documentNotes and references
View the documentAppendix: Scheme proposed by AOSIS for inclusion in the Climate Change Convention
close this folderPart III National greenhouse gas reduction cost curves
close this folder8 Integrating ecology and economy in India
View the document(introduction...)
View the documentIntroduction
View the documentEmissions inventory
View the documentEnergy efficiency and fuel substitution
View the documentEmissions and sequestration from forest biomass
View the documentConclusions
View the documentReferences
close this folder9 Carbon abatement potential in West Africa
View the document(introduction...)
View the documentIntroduction
View the documentLong-term energy and carbon emissions scenarios
View the documentOptions for rational energy use and carbon conservation
View the documentEconomic opportunities for implementation
View the documentPolicy issues for the region
View the documentConclusions
View the documentReferences
close this folder10 Abatement of carbon dioxide emissions in Brazil
View the document(introduction...)
View the documentBrazil energy economy
View the documentEnergy subsector analyses
View the documentChanging land-use trends
View the documentConclusion
View the documentReferences
close this folder11 Thailand's demand side management initiative: a practical response to global warming
View the document(introduction...)
View the documentIntroduction
View the documentEnd-use energy efficiency policies
View the documentCosts and benefits of the DSM master plan
View the documentCO2 reductions from the DSM Plan
View the documentWhy should other developing countries adopt DSM?
View the documentThe role of the multilateral development banks
View the documentConclusions
View the documentReferences
close this folder12 Carbon abatement in Central and Eastern Europe and the Commonwealth of Independent States
View the document(introduction...)
View the documentEnergy-environment nexus
View the documentScenarios for the future
View the documentCountry results
View the documentPolicy implications
View the documentConclusion
View the documentReferences
close this folder13 Greenhouse gas emission abatement in Australia
View the document(introduction...)
View the documentAbatement of energy sector emissions
View the documentEconomic impact of abatement strategies
View the documentNon-energy emission abatement
View the documentAustralia's international role
View the documentCarbon taxes, externalities and other policy instruments
View the documentReferences
close this folderPart IV Conclusion
close this folder14 Constructing a global greenhouse regime
View the document(introduction...)
View the documentConditionality and additionality
View the documentTechnology transfer
View the documentMulti-pronged approach
View the documentImplementation procedures
View the documentRegional building blocks
View the documentNorth-'South' conflicts
View the documentConclusion
View the documentNotes and references
close this folderAppendix: The Climate change convention
View the documentIntroduction
View the documentBackground
View the documentClimate change convention
View the documentArticle 1. Definitions
View the documentArticle 2. Objective
View the documentArticle 3. Principles
View the documentArticle 4 Commitments
View the documentArticle 5. Research and systematic observation
View the documentArticle 6. Education, training and public awareness
View the documentArticle 7. Conference of the Parties
View the documentArticle 8. Secretariat
View the documentArticle 9. Subsidiary body for scientific and technological advice
View the documentArticle 10. Subsidiary Body for implementation
View the documentArticle 11. Financial mechanism
View the documentArticle 12. Communication of information related to implementation
View the documentArticle 13. Resolution of questions regarding implementation
View the documentArticle 14. Settlement of disputes
View the documentArticle 15. Amendments to the Convention
View the documentArticle 16. Adoption and amendment of annexes to the Convention
View the documentArticle 17. Protocols
View the documentArticle 18. Right to vote
View the documentArticle 19. Depositary
View the documentArticle 20. Signature
View the documentArticle 21. Interim arrangements
View the documentArticle 22. Ratification, acceptance, approval or accession
View the documentArticle 23. Entry into force
View the documentArticle 24. Reservations
View the documentArticle 25. Withdrawal
View the documentArticle 26. Authentic texts

Non-energy emission abatement

The other important anthropogenic greenhouse gases emitted in Australia are methane and nitrous oxide. Compared with carbon dioxide, little is known about either sources of, or possible abatement measures for these gases, particularly nitrous oxide. The most important source of methane, thought to account for about two-thirds of total emissions, is domestic livestock, principally cattle, sheep and pigs. Landfill (municipal garbage) is also an important source. Small quantities of methane are released as a result of coal mining and from the natural gas distribution system. Agricultural activities, in this case soil denitrification associated with both the application of nitrogenous fertilizers and the use of legumes in improved pastures, is thought to be the main source of nitrous oxide (Ecologically Sustainable Development Working Groups 1992). Measures which it is thought could contribute to reducing these emissions include: the use of rumen modifiers (anti-bloat capsules) with intensively reared cattle; a modest decrease in stocking rates on some pasture types used for extensively reared cattle; aerobic, rather than predominantly anaerobic treatment of piggery waste; and the optimization of application rates of nitrogen fertilizers. The ESD did not estimate the scope, let alone the cost of these measures if applied on a large scale.

Abatement of atmospheric carbon dioxide levels by increased tree growth in Australia has been analysed superficially. Over the last few years growing concern about deforestation and soil erosion stimulated a variety of government and privately supported programmes to reverse the trends of two centuries of European colonization. These programmes could perhaps stop and perhaps reverse the continuing emission of carbon dioxide previously sequestered in biomass in trees and in the soil. As such they can legitimately be seen as an important part of national activities to curb greenhouse gas emissions, although that is not the reason they were initiated. From a greenhouse perspective, therefore, they are costless measures. However, much more far-reaching tree plantation programmes would be required to make a significant contribution to offsetting carbon dioxide from energy related activities. No estimates are available yet of the possible cost and scale of such programmes in Australia.