Cover Image
close this bookTraditional Medicinal Plants (Dar Es Salaam University Press - Ministry of Health - Tanzania, 1991, 391 p.)
View the documentRegistration and utilization of herbal remedies in some countries of Eastearn, Central and Southern Africa
View the documentA report on the development of a traditional medicine for bronchial asthma
View the documentResume of current research in medicinal plants in Botswana
View the documentThe use of data from traditional medicine: Tunisian experience
View the documentChemical and pharmacological studies of marketed traditional drugs
View the documentResearch into medicinal plants: The Somali experience
View the documentEffect of nitrogen and phosphorus on the essential oil yield and quality of chamomile (Matricaria chamomilla L.) flowers
View the documentChemical characterization of pharmacologically active compounds from Synadenium pereskiifolium
View the documentAbietane diterpene quinones from lepechinia bullata
View the documentAntimicrobial activity of Tanzanian traditional medicinal plants
View the documentIdentification of clovanediol: A rare sesquiterpene from the stem bark of canella winterana L. (Canellaceae), using spectrophotometric methods
View the documentA comparative study of the traditional remedy ''Suma-kala'' and chloroquine as treatment for malaria in the rural areas
View the documentEthnobotany and conservation of medicinal plants
View the documentBiotransformation of hydroxyanthraquinone glycosides in Cassia species
View the documentLe médicament indigène Africaine: Sa standardisation et son évaluation dans le cadre de la politique des soins de santé primaires
View the documentChemical Evaluation of Tanzanian medicinal plants for the active constituents as a basis for the medicinal usefulness of the plants
View the documentEthnobotany and the medicinal plants of the Korup rainforest project area, Cameroon
View the documentSeaweeds in medicine and pharmacy: A global perspective
View the documentBiotechnology and medicinal plants
View the documentPhytochemical investigations of four medicinal plants of Malawi: What next?
View the documentThe chemistry and pharmacology of the essential oil from the leaves of Hyptis suaveolens (L) Point
View the documentSome CNS effects of Datura stramonium L (Solanaceae) in mice
View the documentDiscovery and development of drugs from natural sources
View the documentA Survey of medicinal plants in Tabora region, Tanzania
View the documentIntérêt pharmacognosique des plantes de la flore médicinale Rwandaise: valeur chimiotherapeutique de quelques plantes Rwandaise
View the documentA note on the utilization and commercialisation of traditional medicine
View the documentExperience on the use of Tanzanian medicinal plants for the last decade (1979-1989)
View the documentA comparison of the status of medicinal plants development in Africa with selected parts of the world
View the documentExpérience du Burkina Faso en matière de pharmacopeé traditionnelle
View the documentThe role and use of ethnomedical data in the research on traditional medicines and medicinal plants
View the documentTraditional medicinal plants: Our cultural heritage
View the documentThe use of traditional medicinal plants: The cultural context

Biotransformation of hydroxyanthraquinone glycosides in Cassia species


Department of Pharmaceutical Sciences
Muhimbili Medical Centre
P.O. Box 65013
Dar es Salaam, Tanzania.


The development and application of tissue cultures in the production, biosynthesis and biotransformation of secondary metabolites is presented. Specific consideration is given to 1, 8 - dihydroxyanthraquinone derivatives of Cassia senna and Cassia artemisiodes. Plant Tissue Cultures, both static (solid) and in suspension (liquid) were established from seeds of same. Conditions for culture growth were investigated and optimised and cultures were maintained by sub-culturing for up to 32 passages.

Qualitative and quantitative analysis of hydroxyanthraquinone derivatives was investigated with emphasis on the application of HPLC. Total content and variation of these compounds in the species was carried out. Five compounds were identified and assayed, namely aloe-emodin, chrysophanol, emodin, physcion and rhein.

Incorporation of radio-active precursors (U-14C-acetate and (2-14C- malonate) were studied in cultures of the species, and their conversion into hydroxyanthraquinone derivatives has been instigated. Cultures were harvested at regular intervals, extracted and the hydroxyanthraquinones separated by HPLC before measurement of incorporated radioactivity.

Fluctuation of the radioactivity in the anthraquinone constituents occurred throughout the passage suggesting that biosynthesis and biotransformation were occurring simultaneously.

Plants of the same species were injected with (2-14C)-malonate, anthraquinones extracted at regular intervals and separated by HPLC prior to measurement of radioactivity.


Anthraquinones are the largest group of natural quinones and historically the most important which for a long time have been used as dyes. The derivatives have cathartic activity and are used as purgatives and are widely employed in geriatric and pediatric medicine (Rada et al., 1974). Plant families which are the richest sources of this class of compounds (including important genera) are Polygonaceae (Rheum, Rumex and Polygonum), Rhamnaceae (Rhamaus and Zizyphus), Leguminoceae (Cassia), Rubiaceae (Morinda, Rubia and Galium, and Liliaceae (Threase and Evans, 1983).

Species such as Rheum palmatum (rhubarb), Aloe ferox, Cassia senna, and Rhamnus alnus have long been used as laxative drugs. They contain the anthraquinone derivatives, mainly as glycosides, which on hydrolysis yield aglycones which are hydroxyanthraquinone derivatives. The common polyhydroxyanthraquinone derivatives present in laxative drugs are 1,8 - dihydroxyanthraquinones (1,8 - DHAQ) and typical structures are given in Figure 1.

Fig. 1: Typical polyhydroxyanthraquinones


















Biosynthesis of anthraquinones

Leristner et al., (1969) and Fairbairn et al. (1972) established that naturally occurring anthraquinones are synthesized by two completely separate pathways. Thus those of the emodin type (with substituents in both terminal rings A and C) are usually derived through the acetatemalonate (polyketide) pathway in both higher and lower plants, while the alizarin (without substituents in ring A) type of anthraquinones are derived through the shikimic acid pathway.

Pharmacology and mode of action

Sennosides have the highest purgative activity, followed by rhein monoglcosides, whereas the anthraquinone glycosides are less active and the aglycones have the least activity (Fairbairn et al., 1949, 1965, 1970).

The mechanism of action of anthraquinone glycosides involves the systematic deposition of these compounds to the site of action in the intestine, enzymatic cleavage of the sugar groups and the slow oxidation of the resulting compounds, thus releasing the free anthraquinones which act on the intestines to produce peristalsis (Fairbairn, 1964).

Plant tissue culture

Over the centuries, plants have made a major contribution to the health of mankind, particularly through their use as spices, flavours, fragrances, vegetable oils, soaps, natural gums, resins, drugs, insecticides and other significant industrial, medicinal and agricultural raw materials. Scraag (1986) noted that despite substantial advances in microbial and chemical production methods, plants still remain the source of active ingredients of some 25% of prescribed medicines. The continued demand of these compounds has encouraged scientists to search for reliable alternative sources. One of the significant contributions to the manipulative powers of modern biologists has been the development of tissue culture techniques. Plant cells in culture have been expected to produce secondary metabolites which are characteristic of the whole plant (Rai, 1976). Several patents dealing with the production from cultures of metabolites such as allergens, dios-genin, L-dopa, ginsenosides, glycyrrhixin, etc have been registered (Staba, 1982; Bajaj, 1988).

In this paper the establishment of tissue cultures of Cassia species and the careful phytochemical investigation of the controlled production of the hydroxyanthracene derivatives is discussed. An attempt to devise a sensitive, rapid and efficient analytical technique of these very closely related hydroxyanthracene derivatives by the use of HPLC will also be presented.

Materials and methods


Cultures were established from seeds of Cassia artemisioides on Murashige and Skoog's modified tobacco medium. Cultures were incubated in the dark at 25°-27°C and maintained for more than 30 passages, each of 38 days. Static cultures were chosen for subsequent analysis rather than suspension cultures because they proved to give better results in the production of secondary metabolites. Anthraquinone content variation during a single passage of the culture was done with a view to subsequent investigation of the biotransformation of the compounds produced.

Phytochemical investigations

The phytochemical investigations followed the scheme shown in Figure 2.

Sensitivity screening for sennosides showed negative results. Nonetheless purification was carried out by column chromatography and preparative TLC. Five compounds - chrysophanol, emodin, physcion, aloe-emodin and rhein -were isolated and identified spectroscopically (UV, IR and MS) and by comparison of the melting points with those reported for chrysophanol, emodin, physcion, aloe-emodin and rhein.

Radio-tracer studies

Feeding technique

The precursors used were (1-14C)-acetate and (2-14C)-malonate. 0.1 mCi in 5 ml of each of the tracers was separately added onto the callus once the culture showed visible signs of growth. Cells were harvested at regular intervals, extracted and the compounds were separated by high performance liquid chromatography (HPLC). Plants were fed with 14C-malonate and radio-active incorporation monitored at regular intervals by HPLC. The malonate was fed at the leaf-base where an axillary bud was evident. The HPLC instrument consisted of Rheodyne rotary valve which was equipped with a 100 ml loop, in order to collect sufficient eluate from the column for scintillation studies.

Anthraquinones were consistently eluted in the sequence, aloe-emodin, rhein, emodin, chrysophanol and physcion. Using the reverse phase system, this elution sequence is broadly in accordance with their polarities: aloe-emodin polar, and physcion, least polar is eluted last.


The results of the study to investigate the influence of 14C-acetate and 14C-malonate, intermediates in the biosynthesis of polyketides, on the production of hydroxyanthracene derivatives are shown in Figure 3A and 3B and also in Figure 4A and 4B. The incorporation rates of the two radio-tracers and the radio-activity values are given in Table 1.

Figure 2 : Schematic diagram for the entraction of Hydroxyanthracene derivatives

Figure 3A : Influence of acetate and malenate in rhein production in static cultures of Cassia senna

Figure 3B : Influence and radioactivity incorporation of acetate and malonate in emodin in static cultures of Cassia senna

Figure 4A : Influence and radioactivity incorporation of acetate and malonate in chrysophanol in static cultures of Cassia senna

Figure 4B : Influence and radioactivity incorporation of acetate and malonate in aloe-emodin in static cultures of Cassia senna

Fig 5 : Suggested transformation of anthroquinones derivatives


(a) Anthracene derivatives were able to absorb the radio- tracers.

(b) Malonate was incorporated into hydroxyanthracene compounds at a higher rate than for acetate. The incorporation varied, chrysophanol being highest and with rhein much lower.

The suggested transformation of anthraquinone derivatives is given in Figure 5.

Discussion and Conclusion

From the results above the interconversions shown in Scheme 1 were found to occur.

Scheme 1