Cover Image
close this bookSustaining the Future. Economic, Social, and Environmental Change in Sub-Saharan Africa (UNU, 1996, 365 p.)
close this folderPart 3: Environment and resource management
close this folderThe fuelwood/energy crisis in Sub-Saharan Africa
View the document(introduction...)
View the documentIntroduction
View the documentPopulation and environmental concerns
View the documentThe primary energy sector in Sub-Saharan Africa
View the documentProblems of the energy sector in Sub-Saharan Africa
View the documentThe socio-economic implications of the fuelwood crisis
View the documentStrategies to combat the fuelwood crisis Strategies to combst the fuelwood crisis
View the documentNew and renewable energy development
View the documentConclusion
View the documentReferences

Strategies to combat the fuelwood crisis Strategies to combst the fuelwood crisis

The oil crisis in the 1970s, which raised awareness of the wood-fuel problem, set in motion various strategies for combating it (Eckholm et al. 1984). One of the initial steps that have been taken to solve this problem has been the gathering of adequate data to enhance the understanding of the crisis.

One of the earliest institutions to contribute to the debate was the United Nations University in Tokyo, which recognized the wood-fuel issue as a pressing global problem within its programme of environmental resource utilization and management. Extensive studies were carried out in south-western and northern Nigeria. Among the other institutions that developed a similar focus was the International Labour Organization, whose studies embraced Africa as well as other countries in the developing world. Further information has also been provided by the Beijer Institute of Stockholm about the SADCC countries of southern Africa.

These studies, including the more current ones that are now being undertaken by national institutions, have shed some light on the fuelwood crisis, but more information is still needed to construct a much clearer picture to replace the existing one based on projections from the 1980s. For example, the question of measurement of fuelwood is yet to be solved through further studies throughout SSA.

In the supply and demand area, strategies included a focus on village woodlots, reafforestation, and afforestation programmes based on forest management technology. In Kenya, a study indicated that afforestation programmes projected to the middle of 1985 would contribute only 5 per cent to total fuelwood demand. If such forest plantations were embarked upon in order to solve the wood-fuel problem, the effect will be marginal because the viability of some of the programmes themselves has been questionable.

In spite of this, afforestation programmes have the potential of ensuring some degree of regeneration to conserve soil and water resources around urban centres. They could also provide industrial raw materials and possibly generate export income by exporting timber. In Kenya, for instance, woodlot programmes have been successful in areas that do not have problems with land ownership. They have helped to ease pressure on the natural forest, to protect the environment, and to satisfy the fuelwood needs of the local communities concerned.

Moving to West Africa, the concept of natural forest management, which had been practiced since World War II to provide fuelwood, was revived in the Sudan savanna town of Ouagadougou. This move was made to supply wood from classified forests to meet the growing fuelwood needs. Agro-forestry is also being promoted throughout the semi-arid countries in the region, and is now practiced in most countries, including Sierra Leone. This approach could be further promoted by giving incentives to local people to grow more of their own fuel on their own farmlands and on community land. The short rotation of non-indigenous and indigenous trees for fuels, food, fodder, and other industrial products would be beneficial to most villagers.

The policy implications of these programmes could be far-reaching. Owing to the environmental costs and benefits associated with forestry/energy projects, many countries in Africa are adopting policies that will also modify current energy consumption patterns. Energy policies are being enforced by the appropriate ministries, such as the Ministry of Energy in Ghana, the National Electric Power Authority of Nigeria, and the National Energy Administration of the Sudan. Some of these policies try to improve efficiency by narrowing the fuel energy production ratio. Energy-saving devices, including improved charcoal stoves, have been introduced to replace the traditional stove gradually. Some of these stoves could save up to 50 per cent of fuelwood demand and reduce the energy bill of women in urban centres (FAO 1987).

Other policies have focused on reducing national demand through appropriate pricing policies, improving the current supply of fuelwood through a more efficient charcoal-manufacturing process, and reducing fuelwood consumption patterns by increasing the use of conventional fuels such as petroleum and its by-products. Attempts have also been made to increase the supply and use of new and renewable energy sources.