Cover Image
close this bookSustaining the Future. Economic, Social, and Environmental Change in Sub-Saharan Africa (UNU, 1996, 365 p.)
close this folderPart 3: Environment and resource management
close this folderThe fuelwood/energy crisis in Sub-Saharan Africa
View the document(introduction...)
View the documentIntroduction
View the documentPopulation and environmental concerns
View the documentThe primary energy sector in Sub-Saharan Africa
View the documentProblems of the energy sector in Sub-Saharan Africa
View the documentThe socio-economic implications of the fuelwood crisis
View the documentStrategies to combat the fuelwood crisis Strategies to combst the fuelwood crisis
View the documentNew and renewable energy development
View the documentConclusion
View the documentReferences

New and renewable energy development

Many Sub-Saharan African countries have great potential for the development of hydropower, which is the major source of electricity production (70 per cent). The rest comes from thermal plants, which are fuelled by oil or in some countries by coal. Despite this potential, electricity represents only 10 per cent of total energy consumption in Sub-Saharan Africa (FAO 1987). Even though it was modest, the region experienced a rapid growth of its electric power sector until the economic crisis of the 1980s.

The downturn that occurred had a negative impact on the economy and the electric power sector. The electricity production of SubSaharan Africa is far below that of other major developing regions. Of the amount generated, mining and processing industries absorb up to 80 per cent, with a limited amount being consumed by households. As the consumption rate of electric power increases, the level should be maintained so that many more urban and suburban populations may be supplied with electricity. But the question is, how can this be achieved?

Economic and financial constraints on African countries have been major causes of the inadequate development and slackening growth of the power sector. Being the poorest of the developing countries, the deterioration of their terms of trade has affected their economic growth, which is further worsened by population explosion. The necessary investments for the energy sector are enormous. At the same time it appears that electrification in rural areas could help slow down rural-urban migration, which is on the increase, and pave the way for the conditions for sustained economic development. However, given that rural electrification programmes are capital intensive and usually unprofitable, the possibility of providing electric power to most of the rural population is a forlorn hope. For it is doubtful whether SubSaharan Africa has the potential to mobilize adequate resources to develop this sector.

None the less, technologies now exist for generating electricity based on renewable energy sources apart from hydropower generation. Solar photovoltaic systems, wind generators, and gasifiers are a few of the examples. In 1981, a national conference was organized on New and Renewable Sources of Energy (NARSE) by the United Nations in Rome. A lot of enthusiasm about these resources was generated but one has to be cautious about the technological developments suggested at such energy meetings. The conference painted a rosy and conflict-free picture of solar and wind energy projects. To this end, between 1981 and 1986 there was dissemination of solar and other renewable energy technologies. However, because oil was cheap at the time and the fuelwood crisis had not yet reared its ugly head, not much attention was devoted to research and development of these appropriate technologies.

With the oil crisis, industrial countries made efforts to expand their development endeavours in appropriate technology. In Africa, solar technology was seen as a potential alternative. It was even assumed that African countries could bypass an era of fossil fuel and switch straight to solar energy, which is abundant, ubiquitous, and free (Goodman 1985). But this was not to be realized on a large scale because economic constraints hindered the diffusion of the NARSE technologies. Those NARSE technologies, such as solar cookers, that were initially acceptable appear to have lost their original attraction. Other applications, including solar crop driers, solar water heaters for institutional applications, passive solar heating, wind pumps, and mini-hydro and big-energy in the form of biogas, have, however, achieved some measure of success.

Considering the existing status of NARSE, it seems the energy sector in SSA will continue to be largely based on wood fuels. But this does not mean that alternative sources must not be pursued. Wood energy must be seriously considered as an integral part of a global and multisectoral energy strategy.

In this connection, increasing numbers of action programme initiatives are being developed at both regional and national levels to harmonize and improve rational forest management and wood-fuel availability. Among the national programmes are the Desertification Control Programme, the Environmental Action Plan, and the Tropical Forest Action Plan, which have wood fuel as one of their priority areas. The regional programmes include the Inter-States Committee on Drought Control, the Intergovernmental Authority on Drought and Development, the Southern Africa Development Coordinating Conference, and the Agroforestry Network for Africa Programme.

Donor agencies have been particularly supportive in assisting developing countries to formulate and execute environmentally sound energy policies. One such example is the Energy Sector Management Assistance Programme funded by the United Nations Development Programme and the World Bank. This project, which operates in many African countries, has an elaborate research agenda that emphasizes the promotion of energy-efficient technologies and environmentally benign fuels.