Cover Image
close this bookIntroduction to Electrical Engineering - Basic vocational knowledge (Institut für Berufliche Entwicklung, 213 p.)
close this folder7. Alternating Current
View the document7.1. Importance and Advantages of Alternating Current
View the document7.2. Characteristics of Alternating Current
View the document7.3. Resistances in an Alternating Current Circuit
View the document7.4. Power of Alternating Current

7.1. Importance and Advantages of Alternating Current

In the preceding Sections, we have explained the electro-technical conformities with natural laws under the restricting condition that current intensity and magnitude of voltage remain constant with respect to time. In practice, however, especially in power electrical engineering, mainly alternating current is used.

Alternating current is a current whose magnitude and direction varies periodically; this also applies to alternating voltage.

The electrical laws naturally also apply to alternating current engineering; a few peculiarities have to be observed, however.

Of the various possible forms, the sinusoidal alternating current has the greatest importance. Its substantial advantages are as follows:

· simple and economical generation
· transformation into other values (principle of mutual induction)
· low-loss energy-transmission even through large distances
· the sinusoidal form is not changed by the basic components R, L and C

Because of these and other advantages, alternating current engineering is of paramount importance. If direct current is required (e.g. for the operation of the majority of electronic devices), it can easily be produced by rectifying the alternating current. In practice, especially in power electrical engineering, alternating current is used because of many advantages. This is a current whose magnitude and direction varies periodically. The sinusoidal alternating current has the greatest importance.