No. 1 Develop a decoder circuit for the conversion of the Gray code into the decimal system. Use a Karnaugh map to get a simplified circuit!
Gray code |
decimal | |||
d |
c |
b |
a | |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
2 |
0 |
0 |
1 |
0 |
3 |
0 |
1 |
1 |
0 |
4 |
0 |
1 |
1 |
1 |
5 |
0 |
1 |
0 |
1 |
6 |
0 |
1 |
0 |
0 |
7 |
1 |
1 |
0 |
0 |
8 |
1 |
1 |
0 |
1 |
9 |
X |
X |
X |
X | |
. |
. |
. |
. | |
. |
. |
. |
. | |
No. 2 Develop a code converter for the conversion of the excess 3 code into the 8421 code (BCD).
Complete the truth table!
Use Karnaugh maps to get a simplified circuit!
Excess 3 code |
8421 code | |||||||
dec |
d |
c |
b |
a |
d1 |
c1 |
b1 |
a1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
2 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
3 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
4 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
5 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
6 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
7 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
8 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
9 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
|
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
|
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
|
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
|
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
|
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
|
0 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
The lower six rows are redundant.