Cover Image
close this bookSmall Scale Processing of Oilfruits and Oilseeds (GTZ, 1989, 100 p.)
View the document(introduction...)
View the documentAcknowledgements
View the documentPreface
close this folder0. Introduction
View the document0.1 Economic aspects
close this folder0.2 Technical aspects
View the document(introduction...)
View the document0.2.1 Processes for oil fruits
View the document0.2.2 Processes for oil seeds
View the document0.3 Development potentials
close this folder1. Oil Plants and their Potential Use
View the document1.1 Characteristics of vegetable fats and oils
close this folder1.2 The major oil plants
View the document1.2.1 Oil palm
View the document1.2.2 Coconut palm
View the document1.2.3 Soyabean
View the document1.2.4 Groundnut
View the document1.2.5 Sunflower
View the document1.2.6 Sesame
View the document1.2.7 Rape and mustardseed
View the document1.2.8 Other oil-yielding plants
View the document1.3 By-products
View the document1.4 Further processing
close this folder2. Target Groups and Technologies
close this folder2.1 Family level
View the document(introduction...)
View the document2.1.1 Oil palm fruit
View the document2.1.2 Oil seeds
close this folder2.2 Village level
View the document(introduction...)
View the document2.2.1 Oil palm fruit
View the document2.2.2 Oil seeds
View the document2.3 District level
close this folder3. Case Studies
View the document3.1 Shea nut processing by women in Mali
View the document3.2 Hand-operated sunflowerseed processing in Zambia
View the document3.3 Oil palm fruit processing as a women's activity in Togo
close this folder4. Financial Analysis of the Case Studies
View the document(introduction...)
View the document4.1 Shea nut processing in Mali
View the document4.2 Sunflower seed processing in Zambia
View the document4.3 Oil palm fruit processing in Togo
close this folder5. Selected Equipment
close this folder5.1 Hand-operated equipment
View the document5.1.1 Hand-operated processing of palm fruit
View the document5.1.2 Hand-operated processing of oil seeds
close this folder5.2 Motorized equipment
View the document5.2.1 Motorized processing of oil palm fruit
View the document5.2.2 Motorized processing of oil seeds
View the document6. Ongoing Research and Development Work
View the documentAnnex

1.2.2 Coconut palm

The coconut palm, Cocos nucifera, is botanically grouped in the same subfamily Cocoideae as the oil palm. Although it is long since cultivated in all tropical regions, it originates from the South-West Pacific and South-East Asia; a region which is still the main producer.

For optimal growth, the coconut palm needs an average annual temperature of about 26° C with only small amplitudes between day and night. Therefore, even along the equator good yields are only realized below altitudes of 750 m. At sea level, the area of cultivation extends at least 150 north and south of the equator; in the Pacific it even reaches the subtropics. Where the plant depends on rainfall, 1250 to 2500 mm per year are seen as optimal. Good sunshine conditions are also necessary.


Figure 3: Coconut palm (a) unripe fruit with endosperm beginning to grow, (b) ripe fruit, (c) germ after 3 months, Me - mesocarp, EM = embryo, En = endocarp, Esp = endosperm, Kei = germ, Ha = “apple".

Source: S.Rehm, G. Espig, 1984, p. 87

World production of coconuts and copra (the dried, but otherwise unprocessed flesh of the nut) has only increased moderately over the last decade and currently stands at about 35 million tons. The "Far East" countries (including India and Sri Lanka) together with the Pacific region produce almost 90 % of this volume, Latin America and Africa share the rest about equally. Most important single producing countries are Indonesia (over 10 million tons p.a.) and the Philippines (about 8 million tons p.a.). For coconut oil, local demand is very high in Indonesia; therefore, the Philippines clearly are the leader in the market with a share of over 50 %. Africa as a whole contributes less than 3 %.

Apart from faster ripening and shorter stems, breeding efforts aim at resistance against diseases (e.g. Iethal yellowing which has done tremendous damage in the Caribbean). Crossings with so-called Malayan Dwarfs have given good results in this respect. Major pests are the rhinoceros beetle and a number of other leaf eating beetles and caterpillars.

The cultivation of coconut palms starts with planting the whole fruit, leaving just the upper end above the surface. On germination, the embryo forms a so-called “apple" (which is also consumed fresh). After about 4 to 5 months, the first roots leave the fibrous mesocarp. Planting distances for commercial plantation are about 9 m for high growing and 6 to 7 m for low growing varieties. Undercropping or double-use by grazing is common and can be the most economic land utilization.

A full-grown coconut palm yields 30 to 50 nuts per year with 8000 nuts per ha and year counting as a good harvest. Low growing hybrids usually have smaller nuts but can yield between 200 and 600 fruits per year.

To gain coconut oil, the fibrous husk is often separated from the nut. The nut is then split, usually with a bush knife, the flesh taken out and dried. Drying takes place in the open sun or in simple copra kilns which are fired with the coconut shells. The result is copra which has an oil content of 65 to 70 %. Maximum yields for new varieties are 9 tons of copra per ha, from which 6 tons of oil can be extracted. The actual extraction of the oil from copra is described in other chapters.

Coconut oil contains an extremely small percentage of unsaturated fatty acids. It therefore has a high melting point (22 to 26° C) and does not become rancid. It is therefore highly valued in warm climates and in others used for cakes and pastries. Other than for food purposes, the main use is quality soap.