Zvonimir Damjanovic
It seems beyond doubt that human freedom and national liberty
depend, in the last consequence, on economic independence. That is why having in
mind the part science and technology play within production, and economic
development in general - many analysts pay attention to the discrepancy in the
level of research and education between "North" and "South" - that is, between
developed nations "leading in science," and the bulk of humanity, still striving
- in poverty - for elementary political rights and cultural recognition. One
realizes that knowledge and technological and organizational competence
represent the real prospective potential of a nation; liberation from classical,
blunt forms of colonial rule, from foreign cultural domination, even from the
crafty pressures of neo-colonialism, will bring lasting fruits, stability, only
if it leads people into scientific technological competence, i.e., the power to
create and develop the economy.
But pleading for more science and for emancipation in technology,
both of which are important for industry, does not seem to affect very much the
parallel movement of cultural emancipation, whose dominant aim is to preserve
and revive national roots in culture, and so open up the prospective of human
civilization as a plurality of national cultures. More than that, basic science
and technology, having been nestled for a long time in the limited space of
metropolitan centres, are too often treated as something local - "western
science," "European thought,'" etc. Being local, they should be "foreign" in
other localities!
The theses I shall try to elaborate here are:
1. Basic knowledge or science maps onto everyday life
- including production - in very complicated and mostly unpredictable ways. The
classification of sciences does not and cannot fit the division of practical
aims. Being the "motive force" of production in toto, science in
detail acts as criticism of practical activities. Therefore, science
cannot be developed primarily through the needs of local, divided, practical
activities, and it is impossible to plan scientific applications in detail; one
cannot know in advance which people, and in which combination, are most likely
to solve a new problem on a scientific basis. A broad population should be
cultivated in science so that their society will be able to develop.
2. Technology has grown out of and over its old frame - which was
mere application of basic knowledge. With the development of new
techniques and equipment (let us mention contemporary computing media) it ranks
high with the basic sciences, generating new knowledge. Technology does not deal
only with tools anymore; it deals with robots, too. Man creates systems whose
character one cannot predict - they should be basically investigated. Therefore,
competence in technology is not a matter of choice of some local priorities;
it appears together with natural science and mathematics - as a part of the
basic culture of a broad enough population.
3. Science and technology do not represent a set of recipes, or
static data. They are rather a way of thinking, the heirs of classical
philosophy. By necessity, this way of thinking deals with basic things in human
environments, and in humans themselves. It is not possible for a society to
benefit from science and technology without being exposed - and this includes
the society's spiritual tradition, creeds, and national prejudices - to their
revolutionary influence on human behaviour. The spirit of science cannot be
bottled.
4. As "collective intellect," science and technology are - through
their history - deeply rooted in the human race, and all attempts to ascribe
them to any nation, or group, as local achievements or characteristics can be
proven false. More than that, by "being judge to herself" science has persisted
as a universal element of human culture, "all-human," but it has been able to
impose itself on rather different spiritual media, as soon as propulsive
socio-economic formations took place. It is important to note that scientific
culture is able to co-exist (though not act together) with different creeds and
religions that are otherwise foreign to its structures. Whatever the national
culture is like, science and technology can fit in as a complement. Though it
may sound like a paradox, no national culture will survive unless it makes space
within itself for the "all human" complement of scientific/technological
culture.
5. Far from "creating unemployment," science and technology
liberate man from dull work, from overwork.
The basic, ultimate problem brought about through scientific
revolutions is not unemployment (which can be solved by corresponding social
rearrangements), but the "menace" of leisure timer What will people do when
there is no objective need for them to stay too long around the traditional work
place?
Of course, apart from the chance, for some people at least, to
indulge in scientific research and fine arts, there is - in those societies that
identify progress with the development of true democracy - a chance for many to
take part in social and political activities. In the old time scheme, a few
"wise leaders" think for the badly educated masses of people; knowledge of
society, man, and nature is communicated to them through "teaching"; doctrines
serve in the place of science. In order to be able to govern themselves, people
should be a full step nearer to science, and to govern material things, they
should be a step nearer to technology. Science and technology are a
prerequisite of emancipation and development, not only through their impact on
production, but also because of the decisive democratic factor involved; their
proliferation will render the majority of people competent, not only on
technical but also on social and political matters.
6. It is true that the developing countries, the "South," etc.,
are generally speaking, in great need of the development of science and
technology, education and research. This is a consequence of ages of
exploitation and suppression. But it would be utterly wrong to imagine that the
problems we are speaking about are specific to them! Nations which are developed
or which have long scientific and industrial traditions are equally faced with
the problem of adaptation to the new developments. Neglecting the need for
science, for new education, will not only slow down the rise and emancipation of
the first; it can also hold back the second! The second scientific/industrial
revolution of our time shifts human activities a gigantic step further - leaving
little out of creativity; those that do not adopt modern knowledge, who render
it non-creative, will have it worse than those who missed out on the steam
engine in the first place.
Comments on the Theses
1. The technological and industrial use of basic scientific
knowledge appears as a dominant motive within the movement for the advancement
of science in many "new' countries, while other motives - first of all, cultural
ascent - remain in the shade. Yugoslavia's experience is interesting in this
respect. It comprises many attempts and "schools of thought" in the fields of
research and education, striving to shift public opinion, funds, and
organization towards those trends in scientific and technological development
which would bring the fastest and most useful results.
Traditionally, industry is weak (i.e., it has meagre developmental
research), and many efforts and discussions related to this problem have
appeared within the circle of academic and public organizations land, of course,
during the period when government dealt with these sectors directly, in the
corresponding governmental departments). One should particularly mention (a)
organizational measures, and (b) financing priorities.
Enormous energy has been applied to move academic institutions
dealing with basic sciences nearer to production. This covers the whole
spectrum, from reorganization of some universities - moving mathematics,
physics, chemistry, and biology departments from science faculties to
engineering, chemical technology, and agronomy - to organization of some new
universities and research Institutes which bound them to dominant local
industries.
On the other side, the planning of research and corresponding
priorities have contributed maximally to associating research with some projects
having practical importance.
Still, two decades of experience ha-ye shown that (1) successful
application Ts possible only if one starts with concrete, definite projects,
reflecting real needs in the praxis, while "en bloc" combinations of disciplines
lead nowhere, and (2) successful projects, as a rule, comprise multidisciplinary
teams in various combinations. So, very successful developments in agronomy
(maize, wheat), in biomedical engineering (prostheses, outhouses, etc.), and in
some other fields are based on the association of researchers from different
disciplines, and particularly on a balanced blend of theoretical and practical
work.
The history of newer technological development in the world shows
the same rule in a much brighter light; but I mention our experience in order to
suggest that the experience Ts likely to repeat itself if the same Ts tried
again, and also to suggest that the practical lesson Ts much better In the
society where the association of science and praxis Ts tried anew than
lecturing. Those few instances where application of science develops naturally,
based on the needs of praxis, are about to demonstrate that (a) an appropriate
combination of different scientists is - as a rule - needed to perform some
useful research, and (b) not narrowly specialized experts, but an Involved
structure of a broader scientific medium Ts a necessity. One could speak of the
"critical structure and mass" of a research medium, without which there is
little hope for social and industrial needs that demand the attention of
science.
It is never superfluous to mention that a good scientific
contribution to praxis is usually negation of a technique, its removal or
exchange; if the interest of local factors in industry is invited, it will work
for routine improvements, not for science. Only integrated, broader interests in
industry tend towards science. But the integration of industry lies in a plane
quite different from the one of integration of scientific disciplines, and this
dialectic should be kept in mind if one wants to integrate concrete efforts
around praxis.
2. One still often treats technology as a simple application of
basic knowledge to industry. But contemporary technology is much more than that.
In this context, let us consider the character of
industrialization; it seems that this phenomenon is treated sometimes rather
superficially.
Very often the so-called first industrial revolution is described
basically - as involving the introduction of power machines (steam engines).
Here one should go back to Marx and Das Kapital to see another view: not the
exchange of human (and animal) power, but the exchange of human skill in textile
industries is emphasized; not the labour of muscles, but the work of neural
nets; not energy, but the programme of weaving is what is taken over by
machines! By the way, Marx praised the English language for discriminating
between "labour" and "work"; as is well known, what he wrote about was the work.
This is important, for in fact automation (multiplication
of human like work) was the characteristic of the first industrial revolution.
And automation is often ascribed to our times, to the second big leap in
industrial development.
The dominating change in today's industry goes a step further. One
could call it the introduction of adaptive machinery, in order to avoid
some popular but not quite clear concepts like "cybernation," or "intelligent
machines." Altogether, we have the sequence: tool automation (programmed) -
adaptive (programming) machine.
Such machines run not just processes; they govern
organization of processes, and not only in industry but in many subtle
services, such as health services. Of course, the dominating machinery consists
of computers, of networks of computers (processor networks), of computing media
with flexible organization, reminding one (and not superficially) of neural
networks.
So the object of technology has grown in front of our eyes into a
complex, only partly defined system, whose potentials, behaviour and
characteristics must be investigated as if the system were a "natural" living
creature. That is why technology cannot be treated as a step f _ science to
application, but rather as a basic scientific activity. This is particularly
true if one takes into account such abstract objects of investigation as
mathematical models, i.e., experimental mathematics. The field of basic research
is broadened, as mathematical systems, otherwise untreatable, are made subject
to experimental treatment, and as these same systems are added to natural
objects and laboratory preparations in simulation research.
All this Ts emphasized for two reasons: (a) in order to stress
modern technology as a basic element of scientific culture, and (b) to remind
one of the stubborn fact that there will be no more easy-going engineering; only
"critical mass and structure" of modern technologists, deeply rooted in theory,
can guarantee complete cultural, industrial, and scientific advance.
3. Scientific and technological work is still considered, in many
places, as the occupation of an elite, who are narrow and in a way
isolated in their special "sub-culture." This is nowadays less true. In fact,
the scientific/industrial revolution both pushes many workers in all fields out
of their old jobs, and makes it possible to educate great numbers of youth to
the highest level. It makes not only the society richer, but the education
cheaper and technically easier.
It is supposed that the new intellectual power (embracing the bulk
of coming generations in developed countries, and being not so distant a
possibility for the developing ones) will be engaged in numerous places. So,
simply by mass action, this brave new youth will not permit themselves to be
bottled up in a ghetto of a specific academic sub-culture. They will
spontaneously represent the general new trend.
It should be remembered that the objects of modern science and
technology tend to cover most of the problems of our life, directly and
explicitly - psychology, language, and brain theory are some examples. Here the
scientific approach comes instead, or is integrated with classical philosophy.
It inevitably (as inevitably as it will enter the life of all nations) poses the
problem of adaptation of local mentalities, or the national culture, not just to
the new physical life, but to new outlooks. This aspect of the cultural shock
which is coming might be the most dramatic of all.
It would be of particular interest to investigate the prospects in
some developing countries, where economic expansion and richness coincide with a
heavy leaning towards cultural - especially religious tradition.
4. I cannot resist the wish to cite the Marxian opinion of science
particularly because there are Marxists (or would-be Marxists) professing quite
different beliefs. Describing science as "collective intellect," Marx adds an
important line to his basic anthropological concept. Man is seen as a
programme (a focus of social relations), and he is also seen as a
population, through generations, and science is reproduced, corrected, and
adapted to experience in relative autonomy (being a "judge over herself").
Science is the most objective and most critical activity of man. Of course, in
its real appearance it can be deformed by some carriers (scientists), but its
lasting, collective spirit traverses the individual and local. It can be said
that science is an all-human, cosmopolitan language.
In this respect, it is important to note that contributions of
scientists from Asia and Africa - those that have been identified and probably
many others that have been absorbed - have remained the basic part of science
even during the ages when it was maximally "westernized," and when other
products of the cultures of other nations suffered destruction and neglect.
Let us mention two aspects of the theme:
a. National liberation and emancipation make it
necessary to emphasize the "cultural possessions" and contributions of all, and
to respect the differences.
b. Science cannot stand division; it will remain international,
though practicing science must be chandelled In accordance with the
international division of work, and - unfortunately - political and ideological
divisions.
But science and technology remain common denominators of
all national cultures. Accordingly, every specific cultural complex must
adapt to this fact. Particularly, international communication, exchange, and
cooperation in science and education should be preserved and developed against
even the strongest challenge of any kind. Here, the United Nations University
will make a substantial, and hopeful, contribution together with other
international scientific and educational organizations.
5. As already stated, we usually build our theories of the role of
science In development upon the basic belief that it is an important factor of
industrial development. But what one actually means is: people in
industry.
Are the people we are concerned with, who will be citizens of our
countries in the following ten or twenty years, really expected to work In
Industry in a way similar to our style today, and are they to spend as much time
as we do in routine productive work? No matter how great our doubts about
predictions are, we must accept the negative answer to these questions. Routine
work will be progressively mechanized, and people will be challenged to do
something better; and there will be nothing better without additional education,
without acceptance of a more scientific culture. It is going to be a boring
world for too simple souls. The old truth that man is something that has been
built gradually turns into a new demand that he be rebuilt and re-educated, that
he readapt perhaps more than once during his working age. He must act at that
very level where the changes in the environment are generated, for that is the
level of science and technology. And he will have plenty of his time to offer to
others, to society.
So the real problem is not how to make people effective in the
changing world of production, but what they are to do, apart from production.
It is not possible to combine the effectiveness in changing
production with passivity in a non-democratic order. One could hardly imagine a
man, driven by scientific progress, keen and able to follow the changes around
him, that would accept bureaucratic, doctrinaire leadership. The integrity of
the social system in an age of advanced technology, and when there is a
corresponding education of people, will be preserved only on the condition that
there is some type of genuine democracy and self-government.
Therefore, it would be difficult to see a chance of using new
science and technology for those that are not determined to integrate national
emancipation with democracy, and economic progress with mass education in the
spirit of modern science and technology.
6. In reality, the gap between the developed (rich) and
underdeveloped (poor) grows. A few exceptions (rich but underdeveloped) will
soon be disappointed if their education is not speeded up.
Still, this does not mean that "Those that have will be given
more" Many facts suggest that it is objectively possible to bridge the gap.
For example, communication and computer technologies are becoming
so cheap that the poorest nations Will be able to adopt most effective networks.
The only thing which is not growing cheaper is human competence. We face, in the
near future, a time when everything necessary for education will be easier to
obtain. I have in mind also the improbability that scientific achievements, even
those of military importance, could be "protected," i.e., banned. The real
"currency" will not be the mass of goods produced, not even the momentary
possession of the best technology, but the ability of people to move further, to
change production and services.
It is, therefore, equally possible for a developed community to
drop down low if it neglects science education and technological culture, and
for an underdeveloped community to jump high if it puts the highest priority on
science and education.
I am afraid that objective hindrances to progress in this sense,
for some - maybe many - countries, will be inferior to the subjective resistance
of the bureaucracy, minor groups with leadership ambitions, etc. Here again,
only democratic trends of participation by the majority in the shaping of the
future promise to break the passivity, pessimism, and resistance that belong to
the inheritance - or, rather, to that part of the inheritance which belongs to
the past.
Conclusion
The roles of science and technology in the changing world,
particularly in the development of nations with inherited poverty, cannot be
derived from the trends of daily policy, in either the economic or any other
"practical" sphere. These roles are basic to fast progress, to the ability to
develop at all; they amount to the ability to survive as a nation, and as a
culture.
Science, technology, and education should be given the highest
priority in national life, and also high priority and support in international
co-operation. Everyone should be given the chance to share them, and - what is
most important, in order to make that really possible should have equal rights
to contribute to
them.