![]() | Radio and Electronics (DED Philippinen, 66 p.) |
![]() | ![]() | (introduction...) |
![]() | ![]() | 1. INTRODUCTION |
![]() | ![]() | (introduction...) |
![]() | ![]() | 1.1. A TRIAL TO STATE A DEFINITION OF ELECTRONICS |
![]() | ![]() | 1.2. A SHORT HISTORY OF ELECTRONICS |
![]() | ![]() | 1.3. CLASSIFICATION OF ELECTRONIC DEVICES |
![]() | ![]() | 2. PRINCIPLES OF RADIO COMMUNICATION UNICATION |
![]() | ![]() | 2.1. BASICAL IDEAS ABOUT COMMUNICATION |
![]() | ![]() | 2.2. DEVELOPMENT OF LONG DISTANCE COMMUNICATION |
![]() | ![]() | 2.3. FIDELITY AND DISTORTION |
![]() | ![]() | 3. TRANSDUCERS |
![]() | ![]() | (introduction...) |
![]() | ![]() | 3.1. MICROPHONES |
![]() | ![]() | 3.2. LOUDSPEAKERS |
![]() | ![]() | 3.3. THE TELEPHON SYSTEM |
![]() | ![]() | 3.4. PROBLEM OF FREQUENCY RANGES |
![]() | ![]() | 3.5. BANDWIDTH |
![]() | ![]() | 4. RADIOWAVES |
![]() | ![]() | (introduction...) |
![]() | ![]() | 4.1. ORIGIN OF RADIOWAVES |
![]() | ![]() | 4.2. PARAMETERS OF ELECTROMAGNETIC WAVES |
![]() | ![]() | 4.3. PROPAGATION OF RADIOWAVES |
![]() | ![]() | 4.4. SPECTRUM OF RADIOWAVES AND BANDS OF RADIOWAVES |
![]() | ![]() | 5. MODULATION OF RADIOWAVES |
![]() | ![]() | (introduction...) |
![]() | ![]() | 5.1. THE AMPLITUDE MODULATION (AM) |
![]() | ![]() | 5.2. FREQUENCY MODULATION (FM) |
![]() | ![]() | 5.3. SIDEBANDS |
![]() | ![]() | 5.4. TRANSMISSION OF RADIOSIGNALS |
![]() | ![]() | 6. RECEPTION OF RADIOSIGNALS (AM - TYPE) |
![]() | ![]() | 6.1. AERIAL |
![]() | ![]() | 6.2. THE TUNED CIRCUIT |
![]() | ![]() | 6.3. INCIDENTAL REMARK ON BLOCK DIAGRAMS |
![]() | ![]() | 6.4. DETECTOR OR DEMODULATOR |
![]() | ![]() | 6.5. POWER SUPPLY |
![]() | ![]() | 6.6. AMPLIFIER |
![]() | ![]() | 6.7. SUPERHET RECEIVER (the SUPER) |
![]() | ![]() | 6.8 INCIDENTAL REMARK ON MIXING FREQUENCIES |
![]() | ![]() | 6.9. CONSTRUCTION OF A SUPERHETRADIO |
![]() | ![]() | 7. COMPONENTS OF MODERN RADIO RECEIVERS |
![]() | ![]() | 7.1.1. HANDLING OF ELECTRONIC COMPONENTS |
![]() | ![]() | 7.1.2. HANDLING OF PRINTED CIRCUITS |
![]() | ![]() | 7.1.3. DIFFERENTIATION OF COMPONENTS |
![]() | ![]() | 8. PASSIVE COMPONENTS |
![]() | ![]() | 8.1. RESISTORS ELECTRICAL CHARACTERISTICS |
![]() | ![]() | 8.2. CAPACITORS |
![]() | ![]() | 8.3. INDUCTORS |
![]() | ![]() | 8.4. COMBINATION OF PASSIVE COMPONENTS |
![]() | ![]() | 8.4.1. SERIES CONNECTION OF R AND C, OR R AND L |
![]() | ![]() | 8.4.2. COMBINATION OF L AND C, RESONANT (TUNED) CIRCUITS |
![]() | ![]() | 8.4.3. TUNED CIRCUIT CONNECTED TO AN AC-VOLTAGE |
![]() | ![]() | (introduction...) |
![]() | ![]() | 8.4.4.1. QUALITY OF TUNED CIRCUITS |
![]() | ![]() | 8.4.4.2. BANDWIDTH |
![]() | ![]() | 9. ACTIVE COMPONENTS -1- DIODES |
![]() | ![]() | 9.1. CHARACTERISTICS OF SEMICONDUCTORS |
![]() | ![]() | 9.2. THE PN-JUNCTION OR DIODE |
![]() | ![]() | (introduction...) |
![]() | ![]() | 9.2.1. PN-JUNCTION CONNECTED TO VOLTAGE |
![]() | ![]() | 9.2.2. CHARACTERISTICS OF A PN-JUNCTION OR DIODE |
![]() | ![]() | 9.2.3. ZENERDIODE |
![]() | ![]() | 10. BLOCKS OF RADIOS / -1- / POWER SUPPLIES |
![]() | ![]() | 10.1. GENERAL CONSIDERATIONS |
![]() | ![]() | 10.2. TRANSFORMER |
![]() | ![]() | 10.3. THE RECTIFIERS. |
![]() | ![]() | 10.4. SMOOTHING AND FILTER CIRCUITS |
![]() | ![]() | 10.4.1. THE RESERVOIR CAPACITOR |
![]() | ![]() | 10.4.2. FILTER CIRCUITS |
![]() | ![]() | 10.5. STABILIZATION |
![]() | ![]() | 10.5.1. GENERAL REMARKS |
![]() | ![]() | 10.5.1.1. LOAD VARIATIONS |
![]() | ![]() | 10.5.1.2. INTERNAL RESISTANCE OF VOLTAGESOURCES |
![]() | ![]() | 10.5.1.3. PROBLEMS CAUSED BY THE SMOOTHING CIRCUIT |
![]() | ![]() | 10.5.5. METHODS OF STABILIZATION |
![]() | ![]() | (introduction...) |
![]() | ![]() | 10.5.5.1. PARALLEL-STABILIZATION |
![]() | ![]() | 10.5.2.2. SERIES STABILIZATION |
![]() | ![]() | 11. ACTIVE COMPONENTS -2- / TRANSISTORS |
![]() | ![]() | 11.1. CONSTRUCTION OF A TRANSISTOR |
![]() | ![]() | 11.2. CHARACTERISTICS OF TRANSISTORS |
![]() | ![]() | (introduction...) |
![]() | ![]() | 11.2.1 HANDLING OF CHARACTERISTICS OF TRANSISTORS |
![]() | ![]() | 11.2.1.1. CONSTRUCTION OF THE STATIC-MUTUAL-CHARACTERISTICS |
![]() | ![]() | 11.2.1.2. CONSTRUCTION OF THE DYNAMIC MUTUAL CHARACTERISTICS |
![]() | ![]() | 11.2.1.3. CONSTRUCTION OF THE MAXIMUM-POWER-LINE |
![]() | ![]() | 12. AMPLIFIERS |
![]() | ![]() | (introduction...) |
![]() | ![]() | 12.1. STRUCTURE OF A CLASS A AMPLIFIER |
![]() | ![]() | 12.2. FUNCTION OF A SIMPLE CLASS A AMPLIFIER |
![]() | ![]() | 12.3. ADVANCED CLASS A AMPLIFIER |
![]() | ![]() | 12.4. STABILIZATION OF THE QUIESCENT VOLTAGE |
![]() | ![]() | 13. CLASS B AMPLIFIERS |
![]() | ![]() | 13.1. LIMITS OF CLASS A AMPLIFIERS |
![]() | ![]() | 13.2. CLASS B AMPLIFIERS WITH TRANSFORMERS |
![]() | ![]() | 13.3. CLASS B AMPLIFIERS WITHOUT TRANSFORMERS |
![]() | ![]() | 13.4. POWER AMPLIFIER WITH COMPLIMENTARY TRANSISTORS. |
![]() | ![]() | 14. DETECTOR OR DEMODULATOR |
![]() | ![]() | 15. AGC-AUTOMATIC GAIN CONTROL |
![]() | ![]() | 16. IF-AMPLIFIERS |
![]() | ![]() | 17. FEEDBACK |
![]() | ![]() | 18. OSCILLATORS |
![]() | ![]() | 19. FREQUENCY CHANGERS MIXERSTAGE |
![]() | ![]() | 20. DECOUPLING CIRCUITS |
![]() | ![]() | 21. MATCHING OF AMPLIFIERSTAGES |
![]() | ![]() | 22. COUPLING OF AMPLIFIERSTAGES |
![]() | ![]() | 23. RADIO SERVICING |
![]() | ![]() | 23.1. IMPORTANCE AND SUBJECT OF FAULT FINDING |
![]() | ![]() | 23.2. FAULTS AND FAULT FINDING |
![]() | ![]() | 23.3. FAULT FINDING METHODS |
![]() | ![]() | 24. THE USE OF THE OSCILLOSCOPE |
In order to be able to have a good general view of all electronic components we devide the whole lot into groups. The first of those groups is the group of PASSIVE COMPONENTS.
They are called passive, because they are only reacting on the signal connected to them. They do not control any other value. Examples of those passive components are the resistor, the capacitor, and the inductor. In most of those cases a passive component will have only two wires - but a few of the other groups have two terminals too. The second group of components are the ACTIVE COMPONENTS.
They are called active, because they control currents or voltages on their own, according to orders. Examples of those active components are diodes, transistors and thyristors. Except the diode all of them have more than two terminals.