Cover Image
close this bookIndustrial Metabolism: Restructuring for Sustainable Development (UNU, 1994, 376 pages)
close this folderPart 3: Further implications
close this folder13. Transfer of clean(er) technologies to developing countries
View the document(introduction...)
View the documentIntroduction
View the documentSustainable development
View the documentEnvironmentally sound technology, clean(er) technology
View the documentIndustrial metabolism
View the documentKnowledge and technology transfer
View the documentEndogenous capacity
View the documentCrucial elements of endogenous capacity-building
View the documentInternational cooperation for clean(er) technologies
View the documentConclusions
View the documentTwo case-studies
View the documentReferences
View the documentBibliography

Endogenous capacity

A society that is developing should be a society where productivity and valueadded are rising, and, in the future, where clean(er) technologies (and products) are increasingly penetrating the market. This brings in the issue of equity - that is, the sharing of the benefits of development.

In general, development should be equitable to all stakeholders in the development process, that is, all segments of society that are affected by the process of development. Furthermore, to be sustainable development should also be equitable to future generations. Implicit in this conclusion is the importance of knowledge in the development process. Sustainable development can only be achieved with knowledge and by a decision-making capacity - sensible and autonomous - at all levels of society. This capacity to manage technological change can be called endogenous capacity. It seems that a new frame of reference is required, in which the capacity to make autonomous and sensible decisions on the choice of technologies is more important than the development of the technologies themselves. Achieving "technological autarchy" has at least become an obsolete pursuit, since all countries in the world import technology, some more, and others less.

The current universal trend of more participatory decision-making in human affairs is stimulating a novel approach in which more, and eventually all, relevant stakeholders in society partake. Since both poverty and affluence have brought about environmental problems, albeit of a different nature, stakeholders at all levels of income must engage in dialogue to help set new priorities, regarding development in an environmentally sound(er) way.

Technology change will be central to the management of development and the environment in the future. As such, future ventures will be intensive in knowledge, information, measurement, and concept. This is particularly true of radical approaches to design based on the idea of industrial metabolism.

Endogenous capacity can be defined as the set of human and institutional capabilities necessary to address the question of managing clean(er) technology, either indigenously developed or adapted from abroad. Building endogenous capacity is thus a difficult task and will take time, often decades. While every country has some indigenous capabilities in science and technology, such as infrastructure, scientists and technicians, research institutions, etc., these are not sufficient in themselves to respond to the demands of an environmentally sound development process. Endogenous capacity goes beyond indigenous capacity, as it also includes the ability to understand and manage the linkages to the educational system, the productive sectors, the social structure, and the processes of governance and decisionmaking.

Endogenous capacity is also time-bound in the sense that, though it can be acquired, unless it is maintained it will be lost. In sum, the capacity for environmentally sound development is one of participatory decision-making and implementation in the broadest context.